Optical Mode Filtering with EDC Standard Proposal For 10GBASE-LRM

Heider Ereifej, Pete Hallemeier

May 26, 2004

Supporters of Future Optical Investigation

- Jens Fiedler, Infineon
- Stefano Bottachi, Infineon
- Ali Ghiasi, Broadcom
- Jane Li, Eudyna (Fujitsu)
- Joe Calvitti, CyOptics
- E. Cornejo, OpNext
- M. Bennett, LBNL
- S. Inano, Sumitomo Electric

PAR Criteria 1: Broad Market Potential

- •10GBASE-LRM PAR description says it all!
- •The proposed solution enables the adoption of 10GbE 300m serial solutions by the networking industry:
 - Low cost
 - Small form factor
 - Serial transmission
 - Low power

•This Optical Mode Filtering with simplified EDC proposal will be fully compatible with the IEEE 802.3 standard.

•This proposal will affect the PMD only.

PAR Criteria 3: Technical Feasibility

Proposal Outline:

- Link Power Budget.
- Tx Specifications.
- Rx Specifications.
- Conformance Test Definitions.
- Supporting Technical Appendixes.

The following support data is included:

- Lab link transmission results.
- Simulation studies of the optical mode filtering approach
- Channel simulations utilizing 81 "Cambridge" index profiles

Parameter	10GBASE-LRM	Unit	Note
Center wavelength	1260 - 1355	nm	Related to MMF design
Multimode fiber BW	500	MHz.km	Minimum BW for 50µm and 62.5µm multimode fiber under OFL condition
OMA Power budget	-4.2-(-13.2) = 9	dB	Minimum transmitter OMA minus receiver sensitivity OMA
Average power budget	-3-(-12.0) = 9	dB	Difference of Minimum transmitter average launch power and Stressed Receiver (including penalties).
Fiber material loss	0.5	dB	0.3dB 220m scaled to 0.5dB for 300m
Excess Connector loss in Channel (total)	1	dB	4 connectors, corrected for restricted center launch beam profile
Mode Selective Loss	6	dB	Mode Selective Loss including Source Induced Modal Noise
EDC Insertion Penalty	1	dB	Equivalent optical power penalty to achieve 1E-12 BER
Unallocated	0.5	dB	

Overview Channel Schematic:

300m Multimode Link Simulation Setup:

Center Launch Mode Conditioned Patchcord (CL-MCP):

- MSL can be greatly reduced with a Center Launch MCP
 - Higher quality restricted excitation into fundamentals.
- Ensures launch tolerance of +/- $2\mu m$ into multimode fiber.
- Generates resiliency to other MSL contributors in the link.
- Used to achieve 300m link distance in a poor fiber core alignment environment.

Channel Model Assumptions:

• Cambridge 81 Index Profiles:

- Theoretically simulated index profiles.
- Theoretical model has been independently verified.
- On going, some initial results are presented.

• TIA "1296" Round Robin Cable Index Profiles:

- Performed link experimental measurements.
- Index profile for all 15 fiber links received.
- Theoretical modeling is underway.

• 4 connector link, 0.5dB OFL Loss:

- Using the restricted launch approach 0.25 dB/connector is assumed.
- Transmitter Alignment Tolerance :
 - Use a Center Launch Mode Conditioned Patchcord (CL-MCP).
 - Increases the tolerance of the Tx launch to +/-5 um.
- Receiver Alignment Tolerance of +/- 5μm.
- Thermally and Mechanically induced mode mixing.

Mode Selective Loss (MSL) – 81 index profiles

Two connectors with first connector at 2 μ m and second connector scanned 3 to 5 μ m

IEEE 802.3aq Task Force – May 26, 2004

otium

Mode Selective Loss (MSL) – (Fiber No. 30):

- 4 total connectors, launch connector at 0 to 2 μm, other three connectors 0 to 5 μm.
- MSL generated by: Connector Offsets.
- Simulated by calculating all mode mixing combinations that can occur in the link.

ISI Improvement of Mode Filtering:

Fiber length : 300 m

Note: For more details please refer to the IEEE march study group presentation, by P. Hallemeier.

Transmitter Specifications

Parameter	10GBASE-L	10GBASE-LRM	Unit	Note	
Center wavelength	1260 - 1355	1260 - 1355	nm	Related to MMF design	
Laser cavity	SLM	SLM	-		
Max. RMS spectral width (PRBS)	NA	0.5	nm	Based on DFB	
Min. SMSR	30	30	dB	Almost standard for SLM laser	
Min. average launch power	-8.2 (-4.2)	-3.0	dBm	Guarantees OMA _{min} with ER _{min}	
Max. average launch power	+0.5	+0.5	dBm	Maximum receiver overload or safety requirements	
Min. OMA	-5.2	-4.2	dBm	link sensitivity at 10 ⁻¹² BER	
Max. OMA	NA	+3.5	dBm	Related to maximum average launch power with ER $\rightarrow \infty$	
Min. ext. ratio	3.5 (2.24)	3.5	dB	3.5dB for 220m, 7dB for 300m	
RIN	-128	-128	dB/Hz		
Optical return loss	12	12	dB	Low cost LC connector	
Modal Noise Generation	N/A	TBD	?	Reference MSL Test as proposed by 1GE work, need metric	
Launch Beam Conformance	N/A	0.5	dB	Coupled power test into self stripping SM	

Transmitter Conformance Tests

Parameter	10GBASE-LRM Method
Center wavelength	Same as 10GBASE-LR
Laser cavity	Same as 10GBASE-LR
RMS spectral width	Same as 10GBASE-LR
Min. SMSR	Same as 10GBASE-LR
Min. average launch power (mod.)	Same as 10GBASE-LR
Max. average launch power (mod.)	Same as 10GBASE-LR
Min. OMA	Same as 10GBASE-LR
Max. OMA	Same as 10GBASE-LR
Min. extinction ratio	Same as 10GBASE-LR
RIN	Same as 10GBASE-LR
Optical return loss	Same as 10GBASE-LR
Modal Noise Generation	NEW – Reference MSL Test from 1GE work
Restricted Launch Conformance	NEW – Coupled power measurement into SM fiber

The proposed standard only have incremental changes from the Standard 10GBase-LR spec

Tx Modal Noise Measurement

- Same Modal Noise measurement used in FC and 1GE work
- Compare Modal Noise Generation between 2 paths
- Restricted Launch Conformance would be included
- Material from D.Cunningham, "Lessons from GbE", Jan 2004.

MSL test box

Shake fibre

Ramp laser temperature

Computer controlled modal noise power penalty measurement setup.

Receiver Specifications

Parameter	10GBASE-L	10GBASE-LRM	Unit	Note	
Center wavelength	1260 - 1355	1260 – 1355	nm	Related to MMF design	
Min. average receive power sensitivity	-14.4	-12.0	dBm	Assuming OMA sensitivity at BER=10 ⁻¹² with ER=3.5dB	
Max. average receive power overload	+0.5	+0.5	dBm	Overload or safety	
Sensitivity OMA _{sens}	-13.2	-12.6	dBm	Sensitivity at BER=10 ⁻¹² and back-to- back connection with reference transmitter	
Overload OMA _{max}	NA	+3.5	dBm	Overload with ER→∞	
Max. reflectance	-12	-12	dB	Standard for low cost LC	
Low frequency cut-off	NA	100	kHz	Max. low frequency cutoff	
High frequency cut-off	12.3	7.8	GHz	High frequency cutoff for maximizing SNR	
Receiver Mode Selective Loss	N/A	TBD	dB	Coupled Power Test to be developed by Task Force	

Rx Conformance Test

Conformance test: Ratio between Rx Responsivity using SM source to MM source.

Receiver Conformance Test

Parameter	Unit	Test
Center wavelength	nm	Same as 10GBASE-LR
Min. average receive power sensitivity	dBm	Same as 10GBASE-LR
Max. average receive power overload	dBm	Same as 10GBASE-LR
Sensitivity OMA _{sens}	dBm	Same as 10GBASE-LR
Overload OMA _{max}	dBm	Same as 10GBASE-LR
Max. reflectance	dB	Same as 10GBASE-LR
Low frequency cut-off	kHz	Same as 10GBASE-LR
High frequency cut-off	GHz	Same as 10GBASE-LR
Mode Selective Loss	dB	New – Coupled Power Test

The proposed standard only have incremental changes from the Standard 10GBase-LR spec

The proposal is designed to reduce the cost of the components Used in the 10GBASE-LR single mode Standard:

- 1. Addition of a Mode Filter at the receiver (negligible cost impact).
- 2. Minimize complexity of EDC function ("make it free")
- 3. Use minimum complexity source types to reach 220 and 300m

Relative Cost*	DFB	EAM	
10,000/month	2	4	
50,000/month	1.3	1.7	
100,000/month	1.0	1.2	

- * Prices are relative to DFB at 100kunits/month
- * Assumes uncooled devices
- * Devices are packaged using same TOSA type

PAR Criteria 5: Distinct Identity

- Proposed technology has been shown to meet the power, cost, and form factor requirements of 10GBASE-LRM.
 - Supports all pluggable form factors including XFP
- This proposal addresses a distinct solution to this challenge.

- New Optical filtering approach shows promising results for solving the 300m FDDI grade MM fiber problem.
- Performance improvements from using different optical transmitters and receivers is not cost prohibitive.
- The proposed solution only is an incremental change to the standard 10GBASE-LR specification.
- Depending on the channel model definitions the combination of an EDC with the optical filtering approach can provide the best design tradeoff between cost, power dissipation and performance.

Appendix A: Impulse response improvement with mode filtering:

3 μ m offset at launch and +5 μ m offset in the middle – link is 300 m

Appendix B: Longer reach link experiments

Without Spatial Mode filtering

Elle	Control	Setup	Measure	Calbrate	Utilities	Help	12 Nov 2003 00:58	
Eye Moor	NRZ			Waveform: 1	000			
47×	A							
Editation Ratio			A STREET	NEW.		and a second		ž.
Jamer Rints					-			
Jan Deb				-			AND	
Average Power				and the second second				
T		-			i iti			-
Linet 3	Wilder 1	ficale 10		Scale 100 JM	(^{av}) 96	sec 10.0 mV	rdv Time: 20.0 ps/dv Detay 24.0458 mi	Trigger Level: -109 m/V

600 m

With Spatial Mode filtering

