Symmetric and Near-Gaussian Pulses and the TWDP Stressor Set

John Abbott

Corning Incorporated

IEEE P802.3aq 10GBASE-LRM Task Force October meeting Corning NY October 10-12, 2005

Outline

- Summary need to include symmetric stressor with PIE-D (=PIE(12,5)) approximately 4.4dB, corresponding to offset BW of approximately 660MHz.km
- Analytical Procedure diagnostic plots emphasize that OM1 20um offset launch typically generates a symmetric pulse. Focus on 220m, 20um offset, EMB vs PIE-D
- 3. Discussion & Recommendation
- Backup Analysis plots of EMB vs PIE(12,5), FWQM, "energy outside bit window" support recommendation. <u>Plots at 300m included for reference</u>. Plots for 4um, 5um included for reference.

Summary

Diagnostic plots of -3dB Effective Modal Bandwidth (EMB) vs. PIE-D were made for the 20um offset launch, and the 75 Ewen stressor candidates.

The plots show that at 220m and a PIE-D EDC capability of 4dB, the offset BW be > 700-750MHz.km for success. The stressor candidates have a lower PIE-D (i.e. are easier to equalize) than typical fibers with the same offset BW.

Proposed Additional Stressor

The plot of EMB vs PIE-D for the standard 20um offset launch for OM1 fiber suggests that an additional category of impulse response should be included: **nearsymmetrical pulses, which for a given EMB have the worst PIE-D values**. The edge of the EMB vs. PIE-D distribution is marked by these fibers.

The limit of PIE-D = 4.0dB at 220m is reached by an example symmetric stressor with an EMB of 709 MHz.km (at 300m, EMB = 967MHz.km).

The PIE-D and finite equalizer penalties capture the tradeoff between how much the eye needs to be opened and how difficult that is to achieve needs to be understood.

Proposed Additional Stressor

20um offset EMB vs. PIE-D (300m)

IEEE 802.3aq

20um offset EMB vs. PIE-D (220m)

20um offset EMB vs. PIE-D (220m)

8

IEEE 802.3aq

New Stressors to Cover EMB-PIE-D space

The worst case PIE-D's for a given EMB are associated with a SYMMETRIC pulse which is not represented in the suggested stressor set.

It is not surprising that these are the toughest pulses, because a GAUSSIAN pulse is harder to equalize than a split pulse because there is less energy in the high frequency tail of the FFT.

We construct SYMMETRIC pulses within the Ewen 4pulse framework by choosing A1=A4 and A2=A3. We start with A2=A3 = 0.5 and increase A1 by increments of 0.01. The implementation requires A1+A2+A3+A4=1.00, but this explains the construction.

Detail on Additional Stressor

The additional stressor is constructed within the current framework of 4 impulses at time intervals of 0.75UI and weights of A1,A2,A3,A4.

1st approach (JSASYM1): set A2=A3 & A1=A4, and adjust A1&A4.

2nd approach (JSASYM2, JSASYM2b): set A1 = 0 and A2 = A4, and adjust A2. This approach matches some of the John Ewen "split symmetric" stressors if A2 is large enough, but in fact the largest PIE-D comes with A2 at a lower level.

Single Peak

220m EMB vs. PIE-D & JSAsym1, JSAsym2

Discussion

The boundary of the region simulated by the MC67YY data set with a 20um launch is determined by pulses similar to can be constructed with the 4-peak stressor, either with a 3peak structure with a mean peak & 2 equal side peaks, or a 4 peak structure with 2 equal center peaks and 2 equal side peaks.

This is consistent with the 2001 TIA modeling of OM3 fibers for unequalized links at 850nm 300m 10Gb/s, where the boundary of the 3dB EMB, ISI distribution was determined by pulses whose FFT was similar to that of a double pulse.

Recommendation

Include a stressor representative of the symmetric near-Gaussian pulse seen with offset launches. The stressor becomes even more critical for 300m cases as seen in the backup slides.

The recommended stressor is the "double peak" example on slide 5with a PIE-D and PIE(12,5) of 4.4 and a BW of ~660MHz.km.

Backup Slides

A1-A2-A3-A4 weights, PIE-Ds, and EMBs for JSAsym1, JSAsym2, JSAsym2b

300m examples: PIE-D(220m) vs PIE-D(300m)

Finite Equalizer PIE(12,5) results

Plots using FWQM or "energy outside bit window"

Plots for 4um, 5um offset for comparison.

JSASYM1 weights

	la dana		A 4	4.0	4.0			EMD	
	Index	Δt	A1	A2	A3	A4	PIE-D	EMB	
	1	0.750	0.000	0.500	0.500	0.000	2.54	1375	
	2	0.750	0.010	0.490	0.490	0.010	2.67	1328	
	3	0.750	0.020	0.480	0.480	0.020	2.80	1280	
	4	0.750	0.030	0.470	0.470	0.030	2.93	1230	
	5	0.750	0.040	0.460	0.460	0.040	3.08	1181	
	6	0.750	0.050	0.450	0.450	0.050	3.23	1133	-
	7	0.750	0.060	0.440	0.440	0.060	3.39	1088	
	8	0.750	0.070	0.430	0.430	0.070	3.57	1045	
	9	0.750	0.080	0.420	0.420	0.080	3.75	1004	
	10	0.750	0.090	0.410	0.410	0.090	3.96	967 _	
	11	0.750	0.100	0.400	0.400	0.100	4.18	933	
	12	0.750	0.110	0.390	0.390	0.110	4.42	901	
	13	0.750	0.120	0.380	0.380	0.120	4.68	872	
	14	0.750	0.130	0.370	0.370	0.130	4.97	845	EMBs are for 300m.
	15	0.750	0.140	0.360	0.360	0.140	5.26	821	to convert to 220m
	16	0.750	0.150	0.350	0.350	0.150	5.53	798	
	17	0.750	0.160	0.340	0.340	0.160	5.74	776	multiply by 0.733
	18	0 750	0 170	0.330	0.330	0 170	5 89	757	(avampla, atracar
	19	0 750	0 180	0.320	0.320	0 180	5 99	738	(example, stressor
	20	0 750	0 190	0.310	0.310	0 190	6.05	721	10 still has a 220m
-	21	0.750	0.200	0.300	0.300	0.200	6.08	705	PIE-D of 3.96 but
	27	0.750	0.200	0.290	0.290	0.200	6.09	689	now corresponds to
	22	0.750	0.210	0.200	0.280	0.210	6.07	675	a fibor with BW of
	20	0.750	0.220	0.200	0.200	0.220	6.04	662	
	2 4 25	0.750	0.230	0.270	0.270	0.230	5.00	640	
	20	0.750	0.240	0.200	0.200	0.240	5.99	049	

IEEE 802.3aq

JSAsym2 weights

Index	∆t	A1	A2	A3	A4	PIE-D	3dB EMB	
1	0.750	0.000	0.005	0.990	0.005	1.265	8978	ISAcum2 and
2	0.750	0.000	0.010	0.980	0.010	1.297	8978	
3	0.750	0.000	0.020	0.960	0.020	1.363	8977	JSAsym2b have the
4	0.750	0.000	0.030	0.940	0.030	1.430	8977	same structure,
5	0.750	0.000	0.040	0.920	0.040	1.499	8977	JSAsym2b has the
6	0.750	0.000	0.050	0.900	0.050	1.570	8976	lower EMB and of
7	0.750	0.000	0.060	0.880	0.060	1.643	8976	
8	0.750	0.000	0.070	0.860	0.070	1.718	8976	the curve.
9	0.750	0.000	0.080	0.840	0.080	1.795	8976	
10	0.750	0.000	0.090	0.820	0.090	1.875	8975	
11	0.750	0.000	0.100	0.800	0.100	1.957	8975	▼
12	0.750	0.000	0.110	0.780	0.110	2.042	8975	
13	0.750	0.000	0.120	0.760	0.120	2.130	8974	
14	0.750	0.000	0.130	0.740	0.130	2.222	1804	
15	0.750	0.000	0.140	0.720	0.140	2.316	1625	EMBs are for 300m;
16	0.750	0.000	0.150	0.700	0.150	2.415	1511	to convert to 220m
17	0.750	0.000	0.160	0.680	0.160	2.518	1424	multiply by 0.733
18	0.750	0.000	0.170	0.660	0.170	2.625	1353	
19	0.750	0.000	0.180	0.640	0.180	2.738	1294	(example: stressor
20	0.750	0.000	0.190	0.620	0.190	2.856	1242	10 still has a 220m
21	0.750	0.000	0.200	0.600	0.200	2.981	1197	
22	0.750	0.000	0.210	0.580	0.210	3.113	1157	PIE-D OT 3.96 DUT
23	0.750	0.000	0.220	0.560	0.220	3.254	1121	now corresponds to
24	0.750	0.000	0.230	0.540	0.230	3.404	1088	a fiber with BW of
25	0.750	0.000	0.240	0.520	0.240	3.565	1059	709MHz.km)

JSAsym2b weights

Index	∆t	A1	A2	A3	A4	PIE-D	3dB EMB	
1	0.750	0.000	0.122	0.756	0.122	2.148	8974	
2	0.750	0.000	0.124	0.752	0.124	2.167	8974	
3	0.750	0.000	0.126	0.748	0.126	2.185	1946	
4	0.750	0.000	0.128	0.744	0.128	2.203	1862	
5	0.750	0.000	0.135	0.730	0.135	2.269	1701	
6	0.750	0.000	0.250	0.500	0.250	3.739	1031	
7	0.750	0.000	0.260	0.480	0.260	3.927	1006	
8	0.750	0.000	0.270	0.460	0.270	4.128	983	
9	0.750	0.000	0.280	0.440	0.280	4.337	961	
10	0.750	0.000	0.290	0.420	0.290	4.523	940	
11	0.750	0.000	0.300	0.400	0.300	4.639	921	×
12	0.750	0.000	0.310	0.380	0.310	4.679	903	
13	0.750	0.000	0.320	0.360	0.320	4.674	886	
14	0.750	0.000	0.330	0.340	0.330	4.649	870	
15	0.750	0.000	0.340	0.320	0.340	4.613	855	EMBs are for 300m;
16	0.750	0.000	0.350	0.300	0.350	4.571	841	to convert to 220m
17	0.750	0.000	0.360	0.280	0.360	4.527	827	multiply by 0.733
18	0.750	0.000	0.370	0.260	0.370	4.480	814	
19	0.750	0.000	0.380	0.240	0.380	4.432	802	(example: stressor
20	0.750	0.000	0.390	0.220	0.390	4.383	790	10 still bas a 220m
21	0.750	0.000	0.400	0.200	0.400	4.334	779	
22	0.750	0.000	0.410	0.180	0.410	4.285	768	PIE-D of 3.96 but
23	0.750	0.000	0.420	0.160	0.420	4.235	758	now corresponds to
24	0.750	0.000	0.430	0.140	0.430	4.185	748	a fiber with BW of
25	0.750	0.000	0.440	0.120	0.440	4.135	738	709MHz.km)

Backup Slides

Plots with PIE(12,5)

Using PIE(12,5) instead of PIE-D

PIE(12,5) vs. PIE-D 20um offset pulses.

IEEE 802.3aq

PIE(12,5) vs. PIE-D 20um offset pulses.

IEEE 802.3aq

Plots with FWQM or "energy outside of bit window" as alternatives to 3dB BW

Example plot with bit window & FWQM

220m EMB vs. PIE-D & JSAsym1, JSAsym2

Example 2 20um offset FWQM vs. PIE-D (220m)

IEEE 802.3aq

Example 1 20um offset EMB vs. PIE-D (220m)

IEEE 802.3aq

Backup Slides

PIE-D(300m)

220m PIE-D vs. 300m PIE-D

20um offset EMB vs. PIE-D (300m)

IEEE 802.3aq

Example 1 20um offset EMB vs. PIE-D (300m)

Example 2 20um offset FWQM vs. PIE-D (300m)

Example 1 20um offset EMB vs. PIE-D (300m)

Backup Slides

Center Launch Examples: 4um, 5um

PIE(12,5) vs. PIE-D black=4um,5um pulses

4,5,20um offset EMB vs. PIE-D (220m)

4,5,20um offset EMB vs. PIE(12,5) (220m)

4, 5, 20um offset FWQM vs. PIE-D (220m)

4, 5, 20um offset "bitwin" vs. PIE-D (220m)

4, 5, 20um offset "bitwin" vs. PIE(12,5) (220m)

