Results of a Practical Measurement System for the TP3 Comprehensive Stressed Receiver Sensitivity and Overload Test

Jim McVey

Finisar September 9, 2005

Introduction

- IEEE 802.3aq D2.2 68.6.9 Comprehensive Stressed Receiver Sensitivity and Overload Test specifies an optical signal for testing receivers
 - Signal has specified pulse shape, noise, and OMA characteristics
 - Comments 66 and 87 on D2.2 have raised questions about the practical feasibility of accurately generating the required test signal
- Finisar previously reported on a TP3 tester which was under development http://www.ieee802.org/3/aq/public/mar05/mcvey_1_0305.pdf
 - Electrical only; No E/O in place
 - Suffered from many unwanted reflections due to limitations of the components
- TP 3 tester has been improved
 - Produces an optical output
 - Unwanted reflections sufficiently under control
 - Accuracy and Repeatability investigated and appear very good

Accuracy and Repeatability Issues

- •Time Domain
 - Tap spacing
 - Pulse Shape
- Frequency Response
 - Signal (includes pattern generator spectrum)
 - Noise (includes noise source spectrum)
- PIE-D as measured by TWDP
- Noise
 - Signal-to-Noise Ratio
 - Peak-to-average Ratio (Crest Factor)
- •OMA & ER

Tap Spacing Accuracy

Тар	1	2	3	4	
Delay (from tap 1)	0	0.75	1.50	2.25	UI
Measured Delay	0	0.721	1.534	2.259	UI
Error	0	-0.029	0.034	0.009	UI
Error	0	-2.81	3.30	0.87	ps

- Measured two ways:
 - Time domain; define pulse center of 50% points on rise and fall
 - Frequency domain; Set two equal power taps and observe notch frequency
- Good agreement. Results above are from frequency method

Pulse Shape Split-Symmetric per 802.3aq D2.2

Target PIE-D = 3.83 dBo, Actual PIE-D = 3.70 dBo

7.5 GHz 4th BT RX filter

Signal Spectrums

Signal Stability

- Bottom of Split-Symmetric notch measure in CW mode on network analyzer
 - Electrical measurement
 - Swept over a one hour period
 - Measurement un-calibrated for absolute amplitude, but correct for change in signal level
 - Notch depth is very stable indicating very little drift in amplitude or phase of the ISI generator taps

PIE-D as measured with TWDP

- Sampled on Agilent 86100A DCA, 86105C, PRBS9 pattern; Piers Dawe's code of 2 August 2005, unity fiber channel [1, 0, 0, 0]
- Measurement includes 7.5 GHz 4th BT filter

Stressor	Theory PIE-D	Measured PIE-D	
Precursor	4.03	3.90	dBo
Split-symmetric	3.83	3.70	dBo
Post-cursor	4.20	4.30	dBo

Noise Spectrums

Signal-to-Noise Calibration

- Very easy to set Signal-to-Noise ratio
- Qsq value (i.e. 22.5) needs a small compensation
 - For calibration system noise (68.6.7 line 28)

Summary

- •Measured results Comprehensive Stressed Receiver Sensitivity and Overload test is practical to implement.
- System shown is inherently very accurate and can be calibrated using simple methods and equipment to improve accuracy.
- Measured results demonstrate that the system is stable.
- •The change suggested by comment 66 is not needed for TP3 tester requirements.

Back Up

Precursor Signal Spectrum

Post-cursor Signal Spectrum

Unity Channel Signal Spectrum

Pulse Shape Precursor per 802.3aq D2.2

Target PIE-D = 4.03 dBo, Actual PIE-D = 3.90 dBo

7.5 GHz 4th BT RX filter

Pulse Shape Post-cursor per 802.3aq D2.2

Target PIE-D = 4.20 dBo, Actual PIE-D = 4.30 dBo 7.5 GHz 4th BT RX filter

- Noise is specified as Gaussian, but real system has non-ideal statistics.
- Distortion (primarily compression in amplifiers) can truncate the tails of the Gaussian distribution leading to overly optimistic BER measurements
 - This system uses amplifiers with 1 dB compression point of +13 dBm
 - Noise power is nominally –32 dBm during calibration. This is 45 dB below compression, but...
 - Must account for distortion of signal plus noise
- D2.2 68.6.9.1 line 29 note calls for peak-to-rms of 7
- Have not yet verified noise statistics by measurement

Idealized Additive Gaussian Noise Statistics

Noise statistics, cont.

- Noise signal can be specified using voltage "peak-to-average" (x-to-s) ratio
 - This is sometimes called "crest factor" and my be expressed as 20log₁₀(peak voltage/RMS voltage)
- Some commercial noise sources specified "crest factor" = 20log(Vpeak/Vrms) = 18 dB. Vpeak/Vrms = 7.94. Qfunc(7.94) = 9.8E-16
- Real systems do not hard limit at the peak value. There is gradual signal compression which distorts the Gaussian statistics
 - Component (e.g. amplifier) transfer function can be approximated using a polynomial:

Vout(t) = $a_0 + a_1 Vin(t) + a_2 Vin^2(t) + a_3 Vin^3(t) + a_4 Vin^4(t) + a_5 Vin^5(t) \dots$

- Coefficients can be derived from component specifications like Third-Order Intercept point, 1 dB compression point, etc.
- Distortion effects are slightly different for noise-only (probability density function centered around zero Volts) versus signal plus noise.

 Differences in CPDF (Cumulative Probability Density Function): Distorted needs more "sigmas" to reach target BER 1

