Connector Transfer Matrix

December 22, 2004

P. Pepeljugoski – IBM J. Ewen – JDSU

Connector Transfer Matrix

- Connector transfer matrix: ctm(i,j,k)
 - $\quad i \rightarrow \text{indexes output MPD}$
 - $\quad j \rightarrow \text{indexes input MPD}$
 - k \rightarrow indexes connector offset
 - $0 \rightarrow 12 \mu m$, $0.5 \mu m$ steps for $62.5 \mu m$ fiber
 - $0 \rightarrow 9\mu m$, 0.5 μm steps for 50 μm fiber
- Mode-Groups
 - 62.5μm fiber: 21 mode-groups computed, 18 used in simulations
 - 50µm fiber: 12 mode-groups computed, 10 used in simulations
- Examples:
 - MPDs are Matlab column vectors
 - MPD for 5.5µm offset

```
MPD_out = ctm_62(1:18,1:18,12)*MPD_in;
```

MPD for 4.3µm offset using linear interpolation ctmi = interp1([0:0.5:12], permute(ctm_62, [3 1 2]), 4.3, 'linear'); MPD_out = squeeze(ctmi)*MPD_in;

Fiber model and the scalar wave equation

• The electric field in the fiber assumed to be in the form:

$$\Psi(r,\phi,z) = \psi_{l,q}(r,\phi) \exp(i\beta z) \qquad \psi_{l,q}(r,\phi) = R_{l,q}(r)e^{-il\phi}$$

 Radial component R and propagation constant β are a solution to the scalar wave equation

$$\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + k_0^2 n^2(r) - \frac{l^2}{r^2} - \beta^2\right] R_{l,q}(r) = 0$$

- Connector transfer matrix
 - Compute overlap integral for each mode
 - Assume equal power distribution among modes within input mode-groups
 - Sum intensities to form output mode-group coupling coefficients

Computation of the connector transfer matrix

• Find coupling coefficient between modes of two fibers:

$$c_{l_1,q_1;l_2,q_2} = \int_A \psi_{l_1,q_1}^* \psi_{l_2,q_2} dA$$

• Find elements of the connector matrix

$$C_{PMN}(i,j) = \frac{1}{j} \sum_{\substack{1 \\ 2q_1+l_1+1=i}}^{M} \sum_{\substack{1 \\ 2q_2+l_2+1=j}}^{M} |c_{l_1,q_1;l_2,q_2}|^2$$

• MPD in receiving fiber:

$$\mathbf{MPD}_{2} = \mathbf{C}_{PMN} \times \mathbf{MPD}_{1}$$

Simulation Assumptions

- 62.5µm fiber
 - $\quad r_0 = 31.25 \mu m \rightarrow core \ radius$
 - $n_1 = 1.5 \rightarrow index \text{ of refraction at } r = 0 \mu m$
 - $\Delta = 0.017183 \rightarrow$ relative index difference $\rightarrow n_2 = 1.474$ (index at r= r₀)
 - $\alpha = 1.97 \rightarrow$ index profile exponent (no index perturbations)
 - $\lambda = 1310$ nm
- OM2 fiber
 - $r_0 = 25 \mu m$
 - $n_1 = 1.48$
 - $\Delta = 0.0095$
 - $\alpha = 2.0$ (no index perturbations)
 - $-\lambda = 1310$ nm
- OM3 fiber
 - $-r_0 = 25 \mu m$
 - $n_1 = 1.45$
 - $\Delta = 0.010$
 - $\alpha = 2.0$ (no index perturbations)
 - $-\lambda = 1310$ nm