Connector Transfer Matrix

December 22, 2004

P. Pepeljugoski - IBM
J. Ewen - JDSU

Connector Transfer Matrix

- Connector transfer matrix: ctm($\mathrm{i}, \mathrm{j}, \mathrm{k})$
- $\mathrm{i} \rightarrow$ indexes output MPD
- $\mathrm{j} \rightarrow$ indexes input MPD
- $\mathrm{k} \rightarrow$ indexes connector offset
- $0 \rightarrow 12 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$ steps for $62.5 \mu \mathrm{~m}$ fiber
- $0 \rightarrow 9 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$ steps for $50 \mu \mathrm{~m}$ fiber
- Mode-Groups

- $62.5 \mu \mathrm{~m}$ fiber: 21 mode-groups computed, 18 used in simulations
- $50 \mu \mathrm{~m}$ fiber: 12 mode-groups computed, 10 used in simulations
- Examples:
- MPDs are Matlab column vectors
- MPD for $5.5 \mu \mathrm{~m}$ offset

```
MPD_out = ctm_62(1:18,1:18,12)*MPD_in;
```

- MPD for $4.3 \mu \mathrm{~m}$ offset using linear interpolation

```
        otmi = interp1([0:0.5:12], permute(otm_62,[3 1 2]), 4, 3,'linear');
```

 MPD_out \(=\) squeeze (ctmi) \(* M P D\) _in;

Fiber model and the scalar wave equation

- The electric field in the fiber assumed to be in the form:

$$
\Psi(r, \phi, z)=\psi_{l, q}(r, \phi) \exp (i \beta z) \quad \psi_{l, q}(r, \phi)=R_{l, q}(r) e^{-i l \phi}
$$

- Radial component R and propagation constant β are a solution to the scalar wave equation

$$
\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+k_{0}^{2} n^{2}(r)-\frac{l^{2}}{r^{2}}-\beta^{2}\right] R_{l, q}(r)=0
$$

- Connector transfer matrix
- Compute overlap integral for each mode
- Assume equal power distribution among modes within input mode-groups
- Sum intensities to form output mode-group coupling coefficients

Computation of the connector transfer matrix

- Find coupling coefficient between modes of two fibers:

$$
c_{l_{1}, q_{1} ; l_{2}, q_{2}}=\int_{A} \psi_{l_{1}, q_{1}}^{*} \psi_{l_{2}, q_{2}} d A
$$

- Find elements of the connector matrix

$$
C_{P M N}(i, j)=\frac{1}{j} \sum_{\substack{1 \\ 2 q_{1}+l_{1}+1=i}}^{M} \sum_{\substack{1 \\ 2 q_{2}+l_{2}+1=j}}^{M}\left|c_{l_{1}, q_{1} ; l_{2}, q_{2}}\right|^{2}
$$

- MPD in receiving fiber:

$$
\mathbf{M P D}_{2}=\mathbf{C}_{P M N} \times \mathbf{M P D}_{1}
$$

Simulation Assumptions

- $62.5 \mu \mathrm{~m}$ fiber
$-\quad r_{0}=31.25 \mu \mathrm{~m} \rightarrow$ core radius
- $\mathrm{n}_{1}=1.5 \rightarrow$ index of refraction at $r=0 \mu \mathrm{~m}$
$-\quad \Delta=0.017183 \rightarrow$ relative index difference $\rightarrow n_{2}=1.474$ (index at $r=r_{0}$)
$-\quad \alpha=1.97 \rightarrow$ index profile exponent (no index perturbations)
- $\lambda=1310 \mathrm{~nm}$
- OM2 fiber
$-r_{0}=25 \mu \mathrm{~m}$
$-n_{1}=1.48$
- $\Delta=0.0095$
- $\alpha=2.0$ (no index perturbations)
$-\lambda=1310 \mathrm{~nm}$
- OM3 fiber
$-r_{0}=25 \mu \mathrm{~m}$
$-\quad n_{1}=1.45$
- $\Delta=0.010$
- $\alpha=2.0$ (no index perturbations)
$-\lambda=1310 \mathrm{~nm}$

