Proposal for Traffic Differentiation in Ethernet Networks

Intel: Manoj Wadekar
Gopal Hegde
Cisco: Norm Finn
Hugh Barrass
IBM: Jeff Lynch

March 14, 2005
Outline

- I/O consolidation in Datacenter
- Traffic types and requirements
- I/O Consolidation options
- Proposal for Virtual Links
- Summary
I/O Consolidation in Datacenter

I/O Consolidation simplifies platform architectures, reduces overall platform costs
Traffic Types and Requirements

- Datacenter Ethernet to carry LAN, SAN and IPC traffic: I/O consolidation
 - Eliminates multiple backplanes (Blade Server application)
 - Should support appropriate characteristics for each traffic type

- LAN:
 - Large number of flows, not very sensitive to latency
 - E.g. dominant traffic type in Front End Servers

- SAN:
 - Large packet sizes, sensitive to packet drops
 - E.g. MT and BE servers

- IPC:
 - Mix of large & small messages, small messages latency sensitive
 - E.g. BE Servers, HPC Applications
Challenges in traffic differentiation

- **Link Sharing (Transmit)**
 - Different traffic types may share same queues/links
 - Large burst from one traffic should not affect other traffic types

- **Resource Sharing**
 - Different traffic types may share same resources (e.g. buffers)
 - Large queued traffic for one traffic type should not starve other traffic types out of resources

- **Receive Handling**
 - Different traffic types may need different Receive handling (e.g. interrupt moderation)
 - Optimization for CPU utilization for one traffic type should not create large latency for small message for other traffic types
Consolidation Options

LAN: TCP/IP, UDP
SAN: iSCSI
IPC: RDMA, iWARP

Physical Partitioning
- Consolidation on Ethernet

Partitioning with VLAN or .1P
Limitations of current options

- **Physical Partitioning**
 - Does not reduce cost and complexity of Fabric Interconnects

- **VLAN Partitioning**
 - VLANs = Broadcast Domain, Subnets
 - SAN (iSCSI) and LAN traffic may belong to same subnet (VLAN)
 - Can not use VLAN as “partition”

- **Priority Partitioning**
 - Simplest alternative. Current 802.1p specifies only scheduling algorithm, no resource association
 - Standard .1p queue draining algorithms that allocate bandwidth resources are needed
 - This does not address the need to throttle sources

We need partitioning while maintaining prioritization
Virtually Partitioned Traffic

802.1 P prioritization + 802.1ad precedence differentiates traffic within pipe

LAN \{ pri, DE \}

SAN \{ pri’, DE’ \}

Need “Type” to maintain virtual separation
- \{ pri, DE \} is differentiated for \{ pri’, DE’ \}

Virtual Separation
Virtual Links

- “Virtual Links” can provide differentiation among traffic types (LAN, SAN, IPC etc.)
 - BW can be associated with Virtual Links
 - Resources could be associated with Virtual Links at the network nodes (Different traffic profiles)
 - Interrupt moderation/receive handing differently for each Virtual Link
 - Traffic rates can be adapted according to congestion feedback
- Proposed changes to Queue management and resource association
- No contemplated changes to FDB, VLAN membership, etc.

802.1 should consider defining required changes for Virtual Links
Virtual Links and 802.1p

- BW shared across multiple partitions
- Guaranteed access to multiple traffic types: Maintain priority among various flows within a traffic type
- Resources reserved per “Virtual Link”
 - Different profiles for each traffic type
- Need to allow utilization of available BW to compensate for jitter
Packet through the network

Blade
- App
- TCP/IP
- MAC Client
- 802.3 MAC

Switch
- 802.1 Bridge (MAC Client)
- 802.3 MAC

Blade
- App
- TCP/IP
- MAC Client
- 802.3 MAC

Ingress Rate Control

Resource association

Receive control
Flow Control and Virtual Links

- Link level flow control provides insurance against packet drops during transient congestion
 - Real time effect of end-to-end congestion management
 - Infrequent occurrence of buffer overflow leads to packet loss
 - Remedied by PAUSE
- Link Level PAUSE creates HOL blocking for multiple Virtual Links
 - Oversubscription for one traffic type may create blocking for other traffic types
- Consider per-Virtual-Link flow control
 - Can be defined completely within 802.1
Summary

- I/O Consolidation is important for Datacenter Ethernet
- “Virtual Links” can provide appropriate differentiation allowing various traffic types to share Ethernet network
 - BW, Resources etc.
- 802.1 should consider defining standard mechanism for such differentiation
 - Work towards a proposal for May Interim meeting
 - Requesting discussion/suggestions