DC Modeling for Cabling Balance

Ron Nordin

Panduit Corp.

Objectives:

- To specify a cabling model for "balance" within a pair
- To specify a cabling model for "balance" between pairs

Cabling Topology

4 connector cabling model

Connector:

Cat 6 or Cat5e Specification
DC Resistance $<0.2 \Omega$ per connector (at $20^{\circ} \mathrm{C}$)
DC Resistance unbalance $<50 \mathrm{~m} \Omega$
Cat 6 or Cat5e Nominal
DC Resistance $=0.05 \Omega$ per connector (at $20^{\circ} \mathrm{C}$)
DC Resistance unbalance $<25 \mathrm{~m} \Omega$

Cable:

Horizontal Cable
Cat 6 or Cat5e Specifications
DC Resistance $<9.38 \Omega$ per 100 m (at $20^{\circ} \mathrm{C}$)
DC Resistance unbalance < 5\% (at $20^{\circ} \mathrm{C}$)
Nominal Values
DC Resistance $<7.0 \Omega$ per 100 m (at $20^{\circ} \mathrm{C}$)
DC Resistance unbalance < 3\% (at $20^{\circ} \mathrm{C}$)

Cable Model

$\mathrm{R}=$ cable resistance
$\Delta R=$ resistance imbalance within a pair
$\Delta \mathrm{R}_{\mathrm{ij}}=$ resistance imbalance between pairs

RJ45 Plug Model

$R=$ Bulk resistance
$\Delta \mathrm{R}=$ resistance imbalance within a pair
$\Delta R_{i j}=$ resistance imbalance between pairs

4 connector cabling model

Within a pair

Assumptions:

Standards based analysis

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{HC} \text {-max }}=9.38 \Omega \text { per } 100 \mathrm{~m}\left(\mathrm{R}_{\mathrm{PC}}=\mathrm{R}_{\mathrm{HC}}\right) \\
& \mathrm{R}_{\mathrm{HC} \text {-min }}=8.91 \Omega \text { per } 100 \mathrm{~m}\left(\mathrm{R}_{\mathrm{PC}}=\mathrm{R}_{\mathrm{HC}}\right) \\
& \mathrm{R}_{\mathrm{C}(\text { max })}=0.2 \Omega \quad \mathrm{R}_{\mathrm{C}(\text { min })}=0.15 \Omega
\end{aligned}
$$

Assumptions:

Nominal value based analysis:
$R_{\text {HC-max }}=7.0 \Omega$ per 100 m
$R_{\mathrm{HC}-\text { min }}=6.65 \Omega$ per 100 m
$R_{C(\max)}=0.05 \Omega \quad R_{C_{(\text {min })}}=0.025 \Omega$

Pair to Pair
$\mathrm{R}_{\mathrm{C}(\max)}=0.2(.05) \Omega \quad \mathrm{R}_{\mathrm{C}(\text { min })}=0.1(.01) \Omega$
R_{HC} between pairs can be 1% different

With-in a Pair Analysis

$$
R_{\text {ballast }}=0 \Omega \quad R_{\text {ballast }}=0 \Omega
$$

With-in a Pair Analysis

Pair to Pair Analysis

$$
\mathbf{R}_{\text {ballast }}=3.3 \Omega
$$

Assumptions that we must agree upon:

1.) Maximum imbalance (or saturation) current in the transformer.

- I used 8 mA , can we get by with 12 mA ?
2.) Maximum current per wire pair.
- 420 mA ? (which means a launch of about 45 W from PSE) (210 mA per wire)
3.) Cabling ad-hoc sub-team should set the values that the model requires and support them through measurement verification.

Note that if the per pair current is limited to about 500 mA , balance within a pair as well as between pairs can be accomplished simply with the use of passive ballasting resistors - a Power dissipation penalty exists however.

SUMMARY:

- key model parameters need to be agreed too prior to concluding current balance issues
- recommend that the cabling ad-hoc group take this on as a work item

