

PoE Plus - IEEE 802.3at

Extended Classification Using Ping-Pong Scheme

January 10, 2005 – Phoenix, AZ

Martin Patoka

1/10/2006 MP

REAL WORLD SIGNAL PROCESSINGTM

TEXAS INSTRUMENTS

• Basic idea is to extend existing Classification to multiple cycles

- Classification method is similar to the existing method
- Handshake system
 - .at PD learns PSE type
 - .at PSE learns PD type
- Misidentification avoided with multi-cycle operation and coding techniques
- Allows for large number of classes by either endpoint or midspan PSE
- The number of classes can be easily increased

IEEE 802.3at Ping-Pong Review

The

³

Survey of Proposed Techniques

Apologies to any that I might have missed

1/10/2006 MP

REAL WORLD SIGNAL PROCESSINGTM

TEXAS INSTRUMENTS

Pulse Width and Period Mapping

Behind Your Designs

The

Embedded Clock & Early Termination

From: landry_1a_0705

Class 0

ticks

13 14

12

10

1/10/2006 MP

REAL WORLD SIGNAL PROCESSING[™]

6.49

3.84

TEXAS INSTRUMENTS

Send-Receive Clocks

Plus PSE Voltage Signals 61.9ms ±7.2ms 46.9ms ±2.2ms 15ms 2.76ms ±5ms ±0.13ms 2 cycles PoE+ Baseline classification Powerup classification indicator 15ms **Plus PD Current Response** ±5ms Frequency response dependent on classification power PoE+ Baseline classification Powerup classification countdown

PSE initiates with 2 cycle burst

PD replies with a clock embedded in the current signature. P = F(f)

From: koonce_1_0705

REAL WORLD SIGNAL PROCESSING[™]

1/10/2006 MP

Layer 1 analog dynamic power negotiation

- Coexists with enhanced hardware classification method
- Allows non-disruptive renegotiation of power delivery
- Optimizes power supply utilization regardless of classification granularity
- Hardware based classification does not preclude midspan solution
- Effectively allows system-level power management on both ends of the link
- Optional implementation dictated by market forces
- Nonzero implementation cost
- Some implementation methods may be covered by preexisting IP

Gordon Kapes 9/2005; Survey of Options

1/10/2006 MP

REAL WORLD SIGNAL PROCESSING

8

🖑 Texas Instruments

Modified Pulse Width / ACK

Tclass	t1	t2	t3	t4	t5	t6	t7	t8	t9	t > t9
I_class (802.3af)	Power Allocated [Watts]									
10mA	0.44	0.6	0.7	0.9	1.1	1.5	1.9	2.4	3.0	3.8
18.5mA	4.8	5.0	5.2	5.3	5.5	5.7	5.9	6.1	6.3	6.49
28mA	6.7	7.2	7.8	8.4	9.0	9.7	10.4	11.2	12.0	12.95
40mA	13.9	15.7	17.6	19.8	22.3	25.0	28.1	31.6	35.6	40.0

From: darshan_1_1105

Advantages / Disadvantages

Behind Your Designs

Technique	Advantage	Disadvantage			
Pulse Width and Period Mapping	Simple, low pin count	Clocks on both sides/ Tolerance Windowing for Start Limited Classes			
Embedded Clock / Early Termination	Digital technique	Unknown .af PD response Clock recovery / noise rejection Requires PD "programming"			
Send / Receive Clocks	Simple, low pin count	Unknown .af PD response Tolerance Limited Classes			
Modified Pulse Width / ACK	Simple, low pin count	Clocks on both sides / Tolerance Limited classes Potential PD power issues ACK is added complexity			
Dynamic H/W Negotiation	Solves over-capacity issues	Most complex Requires intelligence at both ends Potential IP issues			
Ping Pong	Uses existing techniques Digital technique Large number of classes	Requires PD "programming" PD higher thermal requirement			

Concern about Existing Technology

Presentation to PoE Plus Study Group in January 2005

1/10/2006 MP

REAL WORLD SIGNAL PROCESSING[™]

• Ping Pong DOES NOT

- Signal while data is present
- Contain unit-unique ID information
- Present continuous fixed bit rate signaling
- Have a method of blocking data signals
- Maintain a database of each PD, its location, and unique ID
- Require two power sources
- Involve (continuous) modulation and demolulation
- Transmit using variable impedance (current sink \neq)

Ping Pong DOES

– Use existing technique multiple times

TEXAS INSTRUMENTS

Propose that the committee choose a basic technique and move forward

APPENDIX Additional Slides from 11/05

1/10/2006 MP

REAL WORLD SIGNAL PROCESSING[™]

TEXAS INSTRUMENTS

1/10/2006 MP

• System Rules

- First 3 Class periods complete within 75ms (.af requirement)
- .at Class Duration is limited; example 150ms
- .at separator pulse is something like 5ms
- Only one Class cycle if first value is not a "4"
- PSE applies current-limited voltage to loop (like .af)
- PD signals via current (like .af)
- Existing Class current definitions are used (0 4)
- Not all codes are used to avoid accepting non-.at PD devices
- Class O is not used for .at PDs because this system requires some pull-down load

- PD Rules
 - .at PD first Class must be "4" to signal PoE+
 - .at PD does not use 444xx code (eliminate Class 4 .af PD)
 - Other codes eliminated that could be caused by non-.at devices
 - .at PD is required to pull Class 1 current to discharge the internal capacitor, and perhaps link capacitance
 - Input diode bridge might prevent identification of separator
 - at PD state machine reset when port voltage enters reset or operational range
 - .at PD indicates wrong PSE type if there are not 5 Class cycles before powering
 - .at PD signals as Class O if too many cycles occur

TEXAS INSTRUMENTS

• PSE Rules

- .at PSE does only one Class if first value is not a "4"
- .at PSE interprets Class "444" as .af PD (\Rightarrow Class O)
- .at PSE stops after receiving code "444"
- Class coding scheme may render other codes invalid
- .at PSE has same privileges to power PD or not
- .at PSE may do multiple Detection-Class-Detection cycles
 - Must assure that a reset is applied before reclassifying
- Power devices with invalid class as .af PD

IEEE 802.3at Ping-Pong Classification

• Advantages

- PSE detects presence of .af or .at PD
- PD detects presence of .af or .at PSE
 - .at PD may choose to operate at reduced functionality
 - .at PD has the ability to signal presence of inadequate PSE once powered
- Adequate number of new classes for reasonable power utilization
- Simple technique uses existing practice
- Works for both end-point and midspan
- A .at PD that is not powered up after classification can attempt to reclass at a lower power
- Disadvantage
 - Dynamic reclassification cannot be done at this signaling layer
- 1/10/2006 MP
- The door is open to reclassification via Ethernet

Texas Instruments