

IEEE802.3af POE meeting

High Power-over-Ethernet over Two Pairs

Jean Picard Texas Instruments

IEEE802.3af POE meeting January 2006 : High Power-over-Ethernet over Two Pairs

REAL WORLD SIGNAL PROCESSING[™]

1

- Scope of investigation:
 - To define and perform the analysis of a system providing more power on
 2 pairs
 - 2. To evaluate a proposed center-tapped (CT) transformer configuration for delivering increased power levels over the signal pair
 - 3. To confirm sufficient current handling capability, and determine any resultant impact on signal integrity

🖑 Texas Instruments

High-Performance Analog Figure 1 : Simplified diagram of high current on 2 pairs application

IEEE802.3af POE meeting January 2006 : High Power-over-Ethernet over Two Pairs

3

High-Performance

UNH Test Setup and Test description

- Existing TI PSE and PD EVM were modified to allow sourcing of up to 33.4 W (up to a nominal limit of 660 mA).
- This circuit provides a method for coupling DC power to the CAT-5 twisted pairs, without passing that additional current through the data transformers.
- The 48-V PoE power is applied to the port circuit in accordance with the present 802.3af specification, except for the modified power and current limit thresholds.
- Signal integrity tests :
 - Equipment connected in a loop-back configuration, with sourced data passed through the high-power port, across cable plants to the powered EVM/load, where the data is decoupled to pass back to the Smartbits card
 - The packet error ratio estimation tests were then repeated at various DC load levels
 - Tests were performed at 10 times the standard number of packet transfers, to replicate more of an endurance stress test.
 - At each of the DC load levels, traffic was passed as 4,680,000 (64-byte) and 197,000 (1518-byte) packets, for a net transfer of nearly 300 million bytes for each case.

IEEE802.3af POE meeting January 2006 : High Power-over-Ethernet over Two Pairs

Texas Instruments

Limitations of Test Setup

- Although millions of packets of data were transferred during testing, this still is a limited sample of devices
- All testing was done at room temperature
- These tests make no attempt to assess the suitability of CAT-5 cable for delivering power at greater than 350 mA DC in typical installations.

IEEE802.3af POE meeting January 2006 : High Power-over-Ethernet over Two Pairs

REAL WORLD SIGNAL PROCESSING"

🖑 Texas Instruments

REAL WORLD SIGNAL PROCESSING[™]

6

7

High-Performance Analog

Test results

- The CT transformer configuration worked successfully under all load conditions, with no discernable impact to data integrity, up to loads of 650 mA DC
- During all traffic pattern tests, the PSE DUT experienced <u>zero</u> packet errors, including when delivering at high power and over the long (high-attenuation) cable plant.
- These results suggest that the CT transformer configuration is a viable scheme for delivering higher DC power over the Ethernet signal pair.
- The measured current imbalance was 14.5mA. The test setup did not allow to change that current imbalance however. A tolerance to more than 20mA is recommended.

IEEE802.3af POE meeting January 2006 : High Power-over-Ethernet over Two Pairs

REAL WORLD SIGNAL PROCESSING"

	Endurance Stress (Data Pass-through) Test			
	High Attenuation Channel		Low Attenuation Channel	
PD Load Current	64 Byte	1518 Byte	64 Byte	1518 Byte
200 mA	0	0	0	0
300 mA	0	0	0	0
400 mA	0	0	0	0
500 mA	0	0	0	0
600 mA	0	0	0	0
650 mA	0	0	0	0

9

REAL WORLD SIGNAL PROCESSINGTM