Vport static and transient response

Fred Schindler Cisco Systems

IEEE 802.3at Task Force, January 2006, Arizona

Agenda

- Show that there is a wide variation in Vport.
- Show that transient conditions need to be considered.

Typical PSE

One port of a multiport PSE.

IEEE 802.3at Task Force, January 2006, Arizona

Major Voltage Drop Sources

1) AC-DC Power Supply

- Tolerance
- Load
- Transient response
- 2) CM Choke & PCB
- 3) Rsense & MOSFET
 - Value, internal/external
- 4) Pass diode
 - Presence & type
- 5) Fuses
 - Presence & type

6) PHY Transformer

Considerations

- Multiple system designs use the same power supply.
- Systems have different:
 - **Circuit topology**
 - **Circuit elements**
- Systems need to work under all loading conditions.
 - < 0.5 W to PoEplus per port
 - 1 to n ports

Main Parameters

• AC-DC

±1% tolerance 45 mohm output resistance ± 1.5V transient response CM choke + PCB, 20 mohm to 50 mohm

• Port

Rsense + MOSFET 0.5 ohm ± 1% Diode 0.2 to 0.5-V Fuse 2x0.2 to 2x0.5-ohm Transformer and choke 0.4 to 0.7-ohm 50 ports

Vpse vs PSE Power

Set maximum Vport at 57V the determine Vpse min.

Agenda

- Show that there is a wide variation in Vport.
- Show that transient conditions need to be considered.

Prevalence of PoE requires fault tolerance

Power supplies are one of the least reliable system components.
Existing systems provide methods to provide redundant power supplies.

Redundant Power Supply

vith external redundant Supply

Support 1 out of n power supply failures

System Example, 1 out of n redundant.

PD View of Supply transient

 $V_{PD} > 2 V_D + V_{cap}$ then DC-DC must operate at V_{PD} .

 V_{PD} < 2 VD + V_{cap} then DC-DC must operate at V_{cap} .

$VPD < 2V_D + V_{cap}$

Energy = $\frac{1}{2}$ C V² (Power x time) = Energy P < E/t P < 1/2CV²/t

Concerns with supporting a transient Vport

- PD Capacitor size.
- Slew rate on the MDI.
- Cable current.
 - PSE limits to I_{LIM}

Conclusion

- Vport is affected by component and load variation.
- Vport is affected by transient response.
 - Load change Redundant supply take over

... or comments

IEEE 802.3at Task Force, January 2006, Arizona

Proposed task force motion

- Propose that the Task Force add the following objective:
- Define a static and a transient Vport for the PSE and PD.
- **P: Fred Schindler S: name**
- (All present) Y:n N:n A:n (802.3 voters) Y:n N:n A:n