IEEE802.3at Task Force Vport ad hoc

Derivation of minimum TLIM for IEEE802.3af/at

Revision 002

April 2007 Revised May 2007

Yair Darshan Microsemi Corporation

Objectives

- To analytically determine worst case Minimum TLIM.
- Derive Spice Model and simulation results to confirm the analytical calculations.
- Setting Minimum TLIM requirements.

Analytical Derivation of TLIM, Icut max and not Icut min

Equation derivation is based on solving differential equation in the current domain <u>and</u> <u>not energy equation</u> as suggested in ref 1.

The energy equation used in last ad-hoc reports is not correctly describing the physical energy transfer from the PSE to PD.

reasons:

- 1. The left side of the equation is change of energy transfer. The 2nd part contains constant voltage hence they cant be equal.
- 2. The left side of the equation refer to the PD side and the right side refering to to the PSE. Losses is a mjor factor in setting TLIM minimum.
- 3. The term (ILIM_MIN ICUT_MIN) is not constant which adds more error by increasing the TLIM_MIN value.

The dynamics of the system is differential in two domains: In time and in negative resistance closed loop behavior. The energy equation doesn't address these two domains and creates errors.

4. The above were confirmed by simulations presented in this document.

News from 802.3af..

33.2.8.4:

"For VPort > 44 V, the minimum value for IPort_max in Table 33–5 shall be 15.4 W/VPort."

33.2.8.4:

"The PSE **shall** support the following **AC current waveform** parameters:

a) **Ipeak = 0.4A** minimum for 50ms minimum and 5% duty cycle minimum.

b) For VPort > 44V, Ipeak = 17.6 W/VPort."

33.3.4

"The PD is classified based on power."

33.3.5.4 Peak operating current

At any operating condition the peak current **shall** not exceed **PPort max/VPort** for more than 50ms max and 5% duty cycle max. **Peak current shall not exceed IPort max.**

The maximum **IPort_dc** and **IPort_rms** values for all operating **VPort** range **shall** be defined by the following equation: **IPort_max [mA] =12950/VPort.**

- 33.3.5.9 PD stability
- CAUTION—When connected together as a system, the PSE and PDdue to the presence of negative impedance at the PD input. See Annex 33D for PD design guidelines to ensure stable operation.

PD models summary

Constant current model

$$TLIM = \frac{Cpd \cdot dv}{di} = \frac{Cpd \cdot dv}{(I_{LIM} - Ipd)} = \frac{Cpd \cdot dv}{(0.4A - 0.35A)}$$

Icharge=50mA constant. Not addressing the case of 0.4A overload at PD!

- At PD overload of 14.4W (0.4A), Icharge=0. TLIM=Infinite.
- Constant power model

$$TLIM = \frac{Cpd \cdot dv}{di} = \frac{Cpd \cdot dv}{(I_{LIM_MIN} - \frac{Ppd}{Vpd})} = \frac{Cpd \cdot dv}{(0.4A - \frac{12.95}{Vpd})}$$

- Icharge starts at 50mA and increases over time due to Cpd ramping voltage! Hence charging current is increased over time.
- If Ppd is going from 12.95W (0.35A) to 14.4W (0.4A) then:

Charging current is zero at t=0 but Icharge>0 AT t>0 which address partially the case of 14.4W (0.4A) over load at the PD.

TLIM_MIN in constant current at PSE Constant current Model at PD

$$TLIM = \frac{Cpd \cdot dv}{di} = \frac{Cpd \cdot dv}{(I_{LIM_{-}MIN} - Ipd)} = \frac{Cpd \cdot dv}{(0.4A - 0.35A)}$$

		TLIM[ms]		
Channel	Model	AF	AT	
Short	C. Current	40.26	9.7	
Long	C. Current	38.36	7.27	

Choosing the PD model

- PD model: Constant Power
- Used in 802.3af for **average** and **peak** current!
- What ever TLIM value is, we can later add margin to cover corner cases.
 - The important issue is to use the same physically correct model for all questions in the specification and deal with corner cases separately.

General Model

Simplifying the model

Parameter	Affect on		Notes	
	Ipeak	TLIM		
Cable Inductance	NO	NO	L/R< <r*c< td=""></r*c<>	
Cable Capacitance	NO	NO	C_cable< <cpd< td=""></cpd<>	
Cps	YES	NO	$0.08\Omega \cdot Cps << Cpd \cdot \sum R$	
Cpd	~YES	YES		
TLIM crossing point	NO	YES	Tcut (50ms) >>TLIM_MIN	
			For Iport <= ICUT_MAX port is ON, Port voltage is within operating range, no excess heat as potentially in ILIM range.	
PD model type	NO	YES	Constant power load (as used by IEEE802.3af all over the spec.)	
			Other model types (R or constant current) differs only in TLIM.	

Who Affects TLIM_MIN

■ Case 1: Cross Regulation Effects ^{1,2}

- N-1 ports are changing load from Full Load to No load.
- 1 Port is consuming Full load. As a results PSE port voltage rapidly increased causing positive current transient at the PDs.
- The positive current transient crosses ILIM region.
- Case 2: PSE Power Supply Voltage changes ^{1,2}
 - Happens during backup power function or equivalent events
 - PSE PS voltage changes from Vmin to Vmax causing positive current transient at the PD.

Objectives ^{1,2,3}:

- We would like to keep the port ON for the duration of this transient for max {TLIM_MIN} i.e Worst Case TLIM_MIN.
- To find ILIM v.s. TLIM operating envelope

Who Affects TLIM_MIN

- Case 1: Cross Regulation Effects ^{1,2}
- PSE port voltage is changed by all (N-1) ports going from Full Load to minimum load.

$$dVcross = Iport \cdot (N-1) \cdot \frac{Rchannel + Rcontrol}{(N-1)} + Iport \cdot (N-1) \cdot Rs =$$

$$Iport \cdot (Rchannel + Rcontrol) + Iport \cdot (N-1) \cdot Rs =$$

$$dVcross = Iport \cdot [(Rchannel + Rcontrol) + (N-1) \cdot Rs]$$

Who Affects TLIM_MIN

Case 2: PSE Power Supply Voltage changes ^{1,2}

- PSE PS Voltage may change from 50V to 57V (802.3af) or from 44V to 57V (802.3at):
 - \rightarrow dV=7V max for 802.3af
 - \rightarrow dV=13V max for 802.3at
- At time constants affected by
 - PS output resistance/Capacitance : 0.08 Ω /300uF
 - Channel Resistance / Cpd, PD diodes
 - PSE output current limit circuitry.
 - Longest TLIM if ILIM = ILIM_MIN=ICUT_MAX
 - 802.3af : 0.4A
 - 802.3at : 0.828A (=1.15*0.72A)

Finding the Worst Case conditionsWorst Case PSE PS voltage changes

By definition (load regulation), dV>dVcross hence the worst case is Case 2.

■ Since in 802.3af, dV=13V hence the worst case is:

Case 2 (PSE Power Supply change) in 802.3af

We can simplify the model to the single port model connected to a PSE PS.

Who Affects TLIM_MIN – Simplified Model

Who Affects TLIM_MIN – Simplified Model

Microsem

$$I(t = T_{LIM}) = I(t = \infty) - (I(t = \infty) - I(t = 0)) \cdot \exp^{-t - T_{LIM}/\tau}$$

$$I(t = T_{LIM}) = Icut _ max - Idc$$

$$I(t = \infty) = Idc - Idc = 0$$

$$I(t = 0) = Ip - Idc$$

$$Ip = \frac{dv - 2 \cdot (Vdf_1 - Vdf_2)}{\sum R} + Idc$$

$$Vdf_i = PD \text{ diode voltage drop at } Idc_i$$

$$\tau = Cpd \cdot \sum R$$

$$I(t) = I(t = \infty) - (I(t = \infty) - I(t = 0)) \cdot \exp^{-t/\tau}$$

$$Icut _ max - Idc = 0 - (0 - (Ip - Idc))) \cdot \exp^{-t/\tau}$$

$$Icut _ max - Idc = (Ip - Idc) \cdot \exp^{-TLIM _MIN/\tau}$$

$$T_{LIM _MIN} = -\tau \cdot \ln\left[\frac{(Icut _ max - Idc)}{(Ip - Idc)}\right]$$

dv

TCUT_MIN=50ms

time

time

TCUT_MAX=75ms TLIM MAX=75ms

Since Idc is a superposition of Idc1 at V1 and Idc2 at V2 (negative load resistance) then the filtering effect of the Channel RC network is averaging the timing which results with:

$$T_{LIM_MIN} \approx \frac{-\tau \cdot \ln \left[\frac{(Icut_max-Idc_1)}{(Ip-Idc_1)}\right] - \tau \cdot \ln \left[\frac{(Icut_max-Idc_2)}{(Ip-Idc_2)}\right]}{2}$$

Worst Case Ip:

$$Ip _ \max = \frac{dv - 2 \cdot (Vdf_1 - Vdf_2)}{\min\{\sum R\}} = \frac{Vps _ \max - Vps _ \min - 2 \cdot (Vdf_1 - Vdf_2)}{\min\{\sum R\}}$$

Worst Case Idc_i :

$$Idc_{i} = \frac{2 \cdot Ppd}{Vpse_{i} + \sqrt{Vpse_{i}^{2} - 4 \cdot Ppd \cdot \sum R}}$$

Worst Case $I_{CUT_MAX} = 1.15 \cdot Idc_{max}$
Worst Case $Cpd = 180uF$
Worst Case $\tau = Cpd \cdot \max\{\sum R\}$

$$\max\{\sum R\} = Rchannel _ \max + Rcontroller _ \max + Rpd =$$

$$12.5\Omega + 3.2\Omega^{1} + 1\Omega = 16.7\Omega$$
For 802.3at:

$$Idc_{1} = \frac{2 \cdot Ppd}{Vpse_{1} + \sqrt{Vpse_{1}^{2} - 4 \cdot Ppd} \cdot \sum R} = \frac{2 \cdot 27.4}{50 + \sqrt{50^{2} - 4 \cdot 27.4 \cdot 16.7}} = 0.722A$$
$$Idc_{2} = \frac{2 \cdot Ppd}{Vpse_{2} + \sqrt{Vpse_{2}^{2} - 4 \cdot Ppd} \cdot \sum R} = \frac{2 \cdot 227.4}{57 + \sqrt{57^{2} - 4 \cdot 27.4 \cdot 16.7}} = 0.579A$$

For 802.3*af* :

$$Idc_{1} = \frac{2 \cdot Ppd}{Vpse_{1} + \sqrt{Vpse_{1}^{2} - 4 \cdot Ppd \cdot \sum R}} = \frac{2 \cdot 12.7}{44 + \sqrt{44^{2} - 4 \cdot 12.7 \cdot 16.7}} = 0.330A$$
$$Idc_{2} = \frac{2 \cdot Ppd}{Vpse_{2} + \sqrt{Vpse_{2}^{2} - 4 \cdot Ppd \cdot \sum R}} = \frac{2 \cdot 12.7}{57 + \sqrt{57^{2} - 4 \cdot 12.7 \cdot 16.7}} = 0.240A$$
$$T_{LIM_MIN(at_, af]} \approx -\frac{\tau}{2} \cdot \left[\ln \left[\frac{(Icut_max - Idc_{1})}{(Ip - Idc_{1})} \right] + \ln \left[\frac{(Icut_max - Idc_{2})}{(Ip - Idc_{2})} \right] \right] = 2.7ms / 6ms$$

Worst Case Analytical Results, w/o linear current limit – Summary

<u>(Cps=0 for comparison purposes, Actual peak current is ~0.366*Ipeak due to Rs, Cps filter)</u>

	902.2 -+		902.2 of	
	002.3at		002.341	
	$\sum R \rightarrow \min$	$\sum R \rightarrow \max$.	$\sum R \rightarrow \min$	$\sum R \to \max$.
PD diodes dynamic drop	0.4	0.4	0.17	0.17
Vpse_min	50	50	44	44
Vpse_max	57	57	57	57
Ppd	27.4	27.4	12.7	12.7
Rch	0	12.5	0	12.5
Rinteface PSE	0.9	3.2	0.9	3.2
Rinterface PD	1	1	1	1
Total R	1.9	16.7	1.9	16.7
Cpd	0.00018	0.00018	0.00018	0.00018
lcut_max	0.828	0.828	0.4	0.4
dV	6.6	6.6	12.83	12.83

Worst Case Analytical/Simulation Results, w/o linear current limit – Summary

(Cps=0 for comparison purposes, Actual peak current is ~0.366*lpeak due too Rs, Cps filter)

	802.3at		802.3af		
Calculated Results	$-\sum R \rightarrow \min $	$\sum R \rightarrow \max$.	$\sum R \rightarrow \min$.	$\sum R \rightarrow \max$.	
Idc at Vpse_min [A]	0.560	0.722	0.292	0.330	
ldc at Vpse_max [A]	0.489	0.579	0.224	0.240	
di [A]	3.474	0.395	6.753	0.768	
lpeak [A]	4.034	1.117	7.045	1.098	
Tlim_min [sec]	0.00084	0.0027	0.0013	0.0060	
Simulation Results					
Idc at Vpse_min [A]	0.552	0.72	0.304	0.349	
Idc at Vpse_max [A]	0.479	0.569	0.231	0.248	
di [A]	3.487	0.416	6.522	0.774	
lpeak [A]	4.039	1.136	6.827	1.122	
Tlim_min [sec]	0.000865	0.00316	0.00138	0.0059	
Simulation/Calculation Ratio					
Idc at Vpse_min [A]	0.99	1.00	1.04	1.06	
Idc at Vpse_max [A]	0.98	0.98	1.03	1.03	
di [A]	1.00	1.05	0.97	1.01	
lpeak [A]	1.00	1.02	0.97	1.02	
Tlim_min [sec]	1.03	1.18	1.04	0.99	

Simulation Results:

Cpd=180uF, dv=57V-50V=7V, PSE/PD interface at max. Resistance, Channel length varies 0 to 100m

(Tlim_min=2.7ms in analytical derivation)

Simulation Results:

Cpd=180uF, dv=57V-44V=13V, PSE/PD interface at max. Resistance, Channel length varies 0 to 100m

Worst Case Analytical Results, with linear current limit $di \cdot dt = Cpd \cdot dv$

$$dt = \frac{Cpd \cdot dv}{di} = \frac{Cpd \cdot dv}{(I_{LIM _MIN} - Ipd(t))}$$

$$TLIM _MIN = \int_{v_1}^{v_2} \left(\frac{Cpd \cdot dv}{di}\right) = \int_{v_1}^{v_2} \left(\frac{Cpd \cdot dv}{I_{LIM _MIN}} - \frac{Ppd}{Vpd(t)}\right)$$

 $v1 = Vpse_\min-ILIM_MIN \cdot \sum R = 36V , 39.65V (af / at)$ $v2 = Vpse_\max-ILIM_MIN \cdot \sum R = 39V , 46.65V (af / at)$

Solving the above.. Or simulating it (easier) ends with the following results

TLIM_MIN with constant current limit

802.3af: With and w/o Linear current limit 1m channel, + 4.2Ω PSE+PD interface resistance, 44V to 57V

802.3at: With and w/o Linear current limit 100m channel, + 4.2Ω PSE+PD interface resistance, 50V to 57V

802.3at: With and w/o Linear current limit 1m channel, + 4.2Ω PSE+PD interface resistance, 50V to 57V

The Big Picture: 802.3af, Long Cable, Max. PSE/PD Interface Resistance

TLIM_MIN summary in all PSE implementations at ILIM_MIN=ICUT_MAX, Constant Power Model at PD

	With Constant Current limit at PSE.		W/O current limit	
	LIM_MIN=ICUT_MAX=0.828A / 0.4A		ILIM_MIN=ICUT_MAX=0.828A / 0.4A	
	dV = 7V / 13V		dV = 7V / 13V	
	R_Interface (PSE+PD=3.2+1=4.2Ω)		R_Interface (PSE+PD=3.2+1=4.2Ω)	
	802.3at	802.3af	802.3at	802.3af
	[msec]	[msec]	[msec]	[msec]
Short Cable (1m)	3.23	17	0.87	1.38
Long Cable (100m)	5.54	23.5	3.16	5.9
Worst case	5.54	23.5	3.16	5.9
		17.43 (R_interface=1.9 Ω)		

Sanity Check

- In 802.3af dv=13V
- In 802.3atdv=7V
- → Ipeak (AF) > Ipeak (AT) → <u>longer TLIM in 802.3af</u>
- In 802.3af Icut_max=ILIM_MIN=0.4A
- Max Idc=0.35A
- Initial Charging current = 0.4A 0.35A=0.05A
- In 802.3at Icut_max=ILIM_MIN=0.828A
- Max Idc=0.72A
- Initial Charging current = 0.828A 0.72A=0.108A
- ➡ Charging current (AF) < Charging current (AT) → longer TLIM in 802.3af</p>
- → It get's worse with longer channel and / or increased PSE/PD interface losses

Proposal – part 1

- TLIM_MIN = 5.9ms for 802.3at
- TLIM_MIN=23.5ms for 802.3af
- If t<TLIM_MIN port is still ON as long as PD is within operating voltage range. If not, Port can be OFF at any time but not later then 75ms.

- Supports worst case PSE PS voltage changes, losses etc.
- Covers both 802.3af and 802.3at

Proposal – part 2

Questions/Discussion

References

- 1. <u>http://www.ieee802.org/3/at/public/mar07/schindler 2 0307.pdf</u>
- 2. <u>http://www.ieee802.org/3/af/public/jul01/darshan 2 0701.pdf</u>
- 2.1. <u>http://www.ieee802.org/3/af/public/documents/proposal for Startup line load cross.pdf</u>
- 2.2. <u>http://www.ieee802.org/3/af/public/documents/Port_to_Port_Cross_Reg.pdf</u>
- 3. <u>http://www.ieee802.org/3/at/public/mar07/darshan 1 0307.pdf</u>

Additional Reference Material

How Cps affects results

Cps affects only the peak current (at the first 150uS @ Cps=300uF) and not affect TLIM_MIN

Testing SIM vs Equation

PSE PS output capacitance value

$$I = \frac{P}{V}, \ dv \ll V$$

$$I \cdot t_{CL} \approx C \cdot dv$$

$$\frac{P}{V} \cdot t_{CL} \approx C \cdot dv$$

$$\frac{t_{CL}}{V \cdot dv} \approx \frac{C}{P}$$

$$dv = 2$$

$$t_{CL} = 100u \sec$$

$$V = 50V$$

$$\frac{C}{P} \approx \frac{100u \sec}{2V \cdot 50V} = \frac{1uF}{1Watt}$$

Effects of transient Current on 1206 resistor – Discussion

- Work is not done yet.
- It looks that 1206 can work under the limitations of 33C.4.
 - Starting point (from 1206 data sheet):
 - At 6ms, Ppeak=5W. \rightarrow I=(5W/1 Ω)^0.5
 - lpeak =~ 2*l (average of transient)
 - Using 2 resistors in parallel allows 4*I=8.9A
 - According to 33C.4:
 - I=(0.025/0.006)^0.5=2.04A < 8.9A → we are good.
- Up to 25us we need to limit peak power to 40W. We need more work to verify it.
- Do we have info regarding damaged 1206 in PDs?

