A better sync header pattern for the FEC parity blocks

Frank Effenberger
Dongning Feng
Raymond W.K. Leung
Dongyu Geng

Huawei Technologies Co. Ltd

RS(255,223)

 The suggested FEC code to be implemented is a RS(255,223) code, where K=27*65=1755, P=4*64=256.

Parity Size = 4 blocks = 32 bytes

The FEC frame structure

- The sync header has the following properties
 - "01" sync header is for Data payload
 - "10" sync header is for Control/Data payload
 - "00" or "11" is the only alternatives for Parity blocks

Downstream Synchronization (1/3)

- As in 3av_0701_effenberger_1.pdf, the Quick Codeword Synchronization is essentially the same as that used for block synchronization in 10G today.
 - Block alignment and FEC codeword alignment can be found in one step.
 - Key idea is to give FEC parity blocks a special sync header pattern.

Downstream Synchronization (2/3)

- Two synchronization methods were proposed in 3av_0701_effenberger_1.pdf
 - Fast Synchronization
 - Depends on the sync header pattern of both payload and parity blocks
 - Simple Synchronization
 - Depends solely on the sync header pattern of parity blocks
- ➤ Both methods depend on the sync header pattern of parity blocks

Downstream Synchronization (3/3)

 A full search had been done to find the special sync header pattern for parity blocks

➤ It was found that {00, 11, 11, 00} is the best sync header pattern for either Fast or Simple synchronization method.

Thank You!