
1

MAC/PHY Delay Variability:MAC/PHY Delay Variability:
Corner Cases and SolutionsCorner Cases and Solutions

glen.kramer@teknovus.com

2

IntroductionIntroduction
• An action item from September meeting required

to verify the PHY Delay Variability through
simulation and to report the results back to TF in
November (see comment 2414)

• In simulation, three corner cases were identified
that cause increased delay variability

Case 1: Deficit Idle Counter changes FEC codeword
boundary

Case 2: Under light load, a frame arrives between column
boundaries

Case 3: Under light load, a frame arrives during parity
block

3

Case 1Case 1
• This case is related to misalignment between

IPG assumed at the MPCP and the actual IPG
allocated by the MAC/RS, with or without the
Deficit Idle Counter mechanism (see 46.3.1.4)

• DIC gives the RS an efficient mechanism to align Start control characters
to lane 0 without always inserting extra idle

• DIC allows for minimum inter-frame gap to vary from 9 to 15 bytes with
the average gap value remaining at 12 bytes

• Without DIC, IPG can take only the values of 12, 13, 14, and 15,
depending on packet size

4

Il
lu

st
ra

ti
o
n
 o

f
C
as

e
1

Il
lu

st
ra

ti
o
n
 o

f
C
as

e
1

D
ef

ic
it

Id
le

 c
ou

nt
er

8 18312 12 8 64 12

MPCP does not allocate
parity overhead before frame #2

MPCP Calculation:
Initial ByteTime = 0
FEC_Overhead = 32* (12+8+183+12)/216 = 0

C
on

tr
ol

 M
ul

tip
le

xo
r

PR
E Frame 1

(183 bytes)IP
G

IP
G

PR
E Frame 2

(64 bytes) IP
G

8 918312

13

64 128

DIC calculates Min IPG = 9, but after
9 bytes, frame #2 is not yet available from
MPCP/MAC. The actual IPG increases to
13 bytes (to keep /S/ aligned to lane 0).

RS Calculation:
Old DIC = 0
191 mod 4 = 3

New DIC = 3
Min.IPG = 9

PR
E

IP
GFrame 1

(183 bytes)IP
G Frame 2

(64 bytes) IP
G

PR
E

8 1318312 64 12832

PCS Calculation: 12+8+183+13 = 216

 FEC Encoder inserts 4
parity blocks before frame #2.
Frame #2 is delayed by 32
byte times.

Complete FEC payload
is ready before frame #2

D
at

a
D

et
ec

to
r

PR
E

IP
GFrame 1

(183 bytes)IP
G Frame 2

(64 bytes) IP
G

PR
EParity

Overhead

5

Notes on Case 1Notes on Case 1
• Case 1 may happen when

1. Deficit Idle Counter allocates smaller IPG (9, 10, 11 octets) and
next frame is not available

2. Deficit Idle Counter allocates larger IPG (13, 14, 15 octets) and
next frame is available

• Case 1 happens because MPCP is trying to estimate how
long the MAC will take to transmit the frame

– The cleanest solution is to allow MAC to tell the MPCP when it is
ready for the next packet (as it was in 802.3ah).

– Unfortunately, due to some global changes done by other TFs,
the MAC unexpectedly lost this ability. This problem is being
fixed right now, but it is unknown when the changes will be
added to 802.3.

– We have to have a working interim solution.

• Whether the Deficit Idle Counter will try to reduce the
IPG or increase it, the actual IPG increases in most
cases. Case 1 will be solved if MPCP will consider that
fact when it calculates packet_initiate_delay values.

6

Proposed Solution for Case 1 [1]Proposed Solution for Case 1 [1]
• The simplest solution for Case 1 is to modify FEC_Overhead()

function to account for the increased IPG.

• Length is rounded up to column boundary
• FEC_Overhead() returns not only the size of the overhead, but the

entire transmission length, including the frame, preamble, and the
IPG. (This also will simplify the state diagrams as shown below)

}
__

__

_
_

{
)(_

⎥
⎦

⎥
⎢
⎣

⎢ +
×+

⎥
⎥

⎤
⎢
⎢

⎡
×=

SIZEPAYLOADFEC
lengthbyteTimeSIZEPARITYFEClengthreturn

SIZECOLUMN
lengthSIZECOLUMNlength

lengthoverheadFEC

7

• In state START PACKET
INITIATE TIMER, replace

packet_initiate_delay =
FEC_Overhead(

sizeof(data_tx) +
tailGuard) +

sizeof(data_tx) +
tailGuard

with

packet_initiate_delay =
FEC_Overhead(

sizeof(data_tx) +
tailGuard)

• OLT Control Multiplexor
(Figure 77-13)

PARSE OPCODE

SEND FRAME

MARK TIMESTAMP

UCT

BEGIN

INIT

START PACKET INITIATE TIMER

UCT

WAIT FOR TRANSMIT

TRANSMIT READY

transmit InProgress ⇐ false
transmitPending ⇐ false

SelectFrame()
transmitPending ⇐ t rue

MCI:MA_DATA.request(DA, SA, m_sdu_tx)

transmitEnable = true

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

opcode_tx ⇐ data_tx[0:15]

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {t imestamp opcode}

data_tx[16:47] ⇐ localTime

transmitInProgress ⇐ t rue
MAC:MA_DATA.request(DA,SA,m_sdu_tx)

packet_initiate_delay = FEC_Overhead(sizeof(data_tx) + tai lGuard) + sizeof(data_tx) + tailGuard
[start packet_initiate_timer, packet_init iate_delay]

packet_initiate_t imer_done

Proposed Solution for Case 1 [2]Proposed Solution for Case 1 [2]

8

• In states CHECK SIZE
and START PACKET
INITIATE TIMER,
delete

sizeof(data_tx) +
tailGuard

as shown

• OLT Control Multiplexor
(Figure 77-13)

T RAN SMIT READ Y

PAR SE OPC ODE

data_tx[16:47] ⇐ localTime

CH ECK SIZE

MARK T IM ESTAMP

UCT

opcode_tx ⇐ data_tx[0:15]

TRANSM IT FR AM E

nextTxTime > stopTime–localTime

BEGIN

INIT

nextTxTime ≤ stopTime–localTime

packet_initiate_timer_done

packet_initiate_delay = FEC_Overhead(sizeof(data_tx) + tailGuard) + sizeof(data_tx) + tailGuard
STAR T PACKET INITIATE T IM ER

[start packet_initiate_timer, packet_initiate_delay]

UCT

nextTxTime = (sizeof(data_tx) + tailGuard + FEC_Overhead(sizeof(data_tx) + tailGuard))/tqSize

transmitAllowed * MCI:MA_DATA.request(DA,SA,m_sdu_tx)

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

opcode_tx ∈ { timestamp opcode} opcode_tx ∉ { timestamp opcode}

MAC:MA_DATA.request(DA,SA,m_sdu_tx)

SelectFrame()
if (grantStart)

byteTime ⇐ 16
grantStart ⇐ false

Proposed Solution for Case 1 [3]Proposed Solution for Case 1 [3]

9

Case 2Case 2
• The value of packet_initiate_delay (as fixed for case 1) is aligned to

the next column boundary, to account for possible IPG increase in
MAC/RS.

• When frames are available from MAC Client back-to-back (under heavy
load), the calculation of packet_initiate_delay is done at the time when
the previous packet_initiate_timer just expired, i.e., on column
boundary. That assures that packet_initiate_timer expired on packet
boundary.

• However, under light load, the next frame may not be available from
the MAC Client when the previous packet_initiate_timer just expired.
Instead, it may become available between column boundaries.

• In this case, the MAC/RS will additionally delay the frame to align /S/
character to lane 0. This delay will increase the transmission interval
before the frame and may cause parity data to be inserted in front of
the frame, causing further delay by additional 32 byte times.

10

Illustration of Case 2Illustration of Case 2

D
at

a
D

et
ec

to
r

PR
E

IP
G

D
ef

ic
it

Id
le

 C
ou

nt
er

PR
E

IP
G

C
on

tr
ol

 M
ul

tip
le

xo
r

PR
E

IP
G

11

Case 3Case 3
• When MPCP Control Multiplexor sends a frame, it

also calculates the time when the next frame can
be transmitted (see Figures 77-13 and 77-14).

• Under the light load, the next frame may not be
available from the MAC Client at the time when
MPCP Control Multiplexor expects it.

• The next frame may become available at a time
when Data Detector is inserting parity data.
Thus, the next frame will experience a delay of
up to 32 byte times.

12

Illustration of Case 3Illustration of Case 3

The next frame
is delayed by up to
32 byte times.

Packet_initiate_timer

FEC OHFrame N Frame N+1

Idles Fra… ...me N Frame N+1Parity Parity

MPCP calculates the soonest
time the next frame can be
transmitted after the current frame

 A frame
can be sent
here

 But the next frame
is available from MAC
Client only here

Data Detector starts sending parity
blocks just before the next frame becomes
available from the MAC Client

13

PARSE OPCODE

SEND FRAME

MARK TIMESTAMP

UCT

BEGIN

INIT

START PACKET INITIATE TIMER

UCT

WAIT FOR TRANSMIT

TRANSMIT READY

transmit InProgress ⇐ false
transmitPending ⇐ false

SelectFrame()
transmitPending ⇐ t rue

alignmentCorrect *
MCI:MA_DATA.request(DA, SA, m_sdu_tx)

transmitEnable = true

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

opcode_tx ⇐ data_tx[0:15]

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {t imestamp opcode}

data_tx[16:47] ⇐ localTime

transmitInProgress ⇐ t rue
MAC:MA_DATA.request(DA,SA,m_sdu_tx)

packet_initiate_delay = FEC_Overhead(sizeof(data_tx) + tailGuard) + sizeof(data_tx) + tailGuard
[start packet_initiate_timer, packet_init iate_delay]

packet_initiate_t imer_done

• Modify transition from
INIT to WAIT TO
TRANSMIT to allow
frames through only
– On column boundary

and
– During payload

portion of FEC
codeword.

• MAC Control frames
that arrive during the
parity portion will be
delayed before
timestamping until
the parity part
completes and column
boundary is aligned.

• OLT Control Multiplexor
(Figure 77-13)

Proposed Solution for Cases 2 & 3Proposed Solution for Cases 2 & 3

14

TR ANSM IT R EADY

PARSE OPCODE

data_tx[16:47] ⇐ localTime

CHECK SIZE

MAR K TIMESTAM P

UCT

opcode_tx ⇐ data_tx[0:15]

TR ANSMIT FRAME

nextTxTime > stopTime–localTime

BEGIN

IN IT

nextTxTime ≤ stopTime–localTime

packet_initiate_timer_done

packet_initiate_delay = FEC_Overhead(sizeof(data_tx) + tailGuard) + sizeof(data_tx) + tailGuard

START PAC KET IN IT IATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

nextTxTime = (sizeof(data_tx) + tailGuard + FEC_Overhead(sizeof(data_tx) + tailGuard))/tqSize

transmitAllowed *
alignmentCorrect *

MCI:MA_DATA.request(DA,SA,m_sdu_tx)

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

MAC:MA_DATA.request(D A,SA,m_sdu_tx)

SelectFrame()
if (grantStart)

byteTime ⇐ 16
grantStart ⇐ false

Proposed Solution for Cases 2 & 3Proposed Solution for Cases 2 & 3

• Similar modification
should be made to
ONU Control
Multiplexor.

• ONU Control Multiplexor
(Figure 77-14)

15

Proposed Solution for Cases 2 & 3Proposed Solution for Cases 2 & 3
• A new variable alignmentCorrect should be defined

as follows:

alignmentCorrect
TYPE: boolean

At the OLT, this variable is an alias for the condition
byteTime[1:0] == 0 AND byteTime < FEC_PAYLOAD_SIZE.

At the ONU, this variable is an alias for the condition
byteTime[1:0] == 0 AND (byteTime < FEC_PAYLOAD_SIZE
OR grantStart).

This variable is set true on column boundaries (XGMII
transfers) occurring during the payload part of an FEC
codeword. It is reset to false with the next increment of
byteTime.

16

SummarySummary
• Three corner cases are identified that can add up

to 32 byte times of frame delay variability each
(the three cases are exclusive)
– Downstream variability: 32 byte times, or 1.6 TQ
– Round-trip variability: 64 byte times or 3.2 TQ.

• These conditions are not detrimental. Current
guard bands support 8 TQ downstream and 12
TQ round-trip.

• But removing this overhead is also not difficult
– Few changes to state diagrams as shown above
– With the proposed fixes, the frame delay variability is 0

in the downstream and 0.2 TQ in the upstream (due to
/S/ character alignment)

17

Straw PollStraw Poll
• The three corner cases should be fixed as

suggested on slides 6-8 and 13-15.

• The delay variability due to the three corner
cases should be considered a part of expected
transmission overhead. No changes to state
diagrams should be made.
