PHY wake time shrinkage calculations for 1000BASE-T

Wake Time Shrinkage Ad Hoc IEEE P802.3az Task Force February 23, 2009

> Adam Healey LSI Corporation

PHY wake time shrinkage (WTS)

- Transmitter $(T_{PHY_SHRINK_TX})$ The difference between...
 - the delay between a transition from "Assert low power idle" to "Normal idle" at the xMII and the corresponding start of the wake signal at the MDI and...
 - the propagation delay of a start of shell delimiter from the xMII to the MDI $(T_{PHY_PROP_TX})$
- Receiver $(T_{PHY SHRINK RX})$ The difference between...
 - the delay between start of the wake signal at the MDI and the corresponding transition from "Assert low power idle" to "Normal idle" at the xMII and...
 - the propagation delay of a start of shell delimiter from the MDI to xMII $(T_{PHY_PROP_RX})$

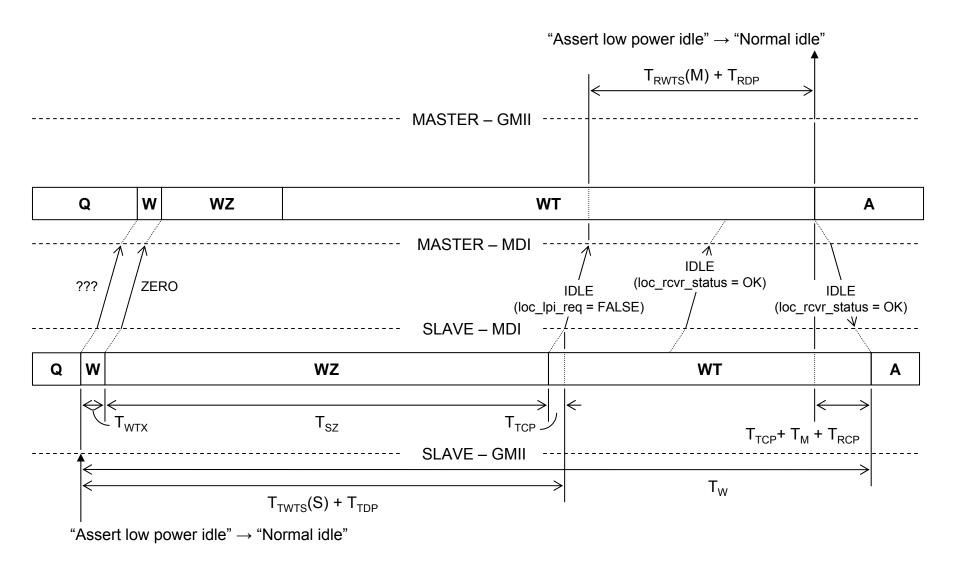
Start of wake signal

- This event is uniquely defined for each PHY
- It should be something that can be clearly measured at the MDI
- It is a matter of convention
 - The definition will be consistently applied to the transmitter and receiver
 - It affects the partitioning of WTS between the transmitter and receiver, but should not affect the total WTS

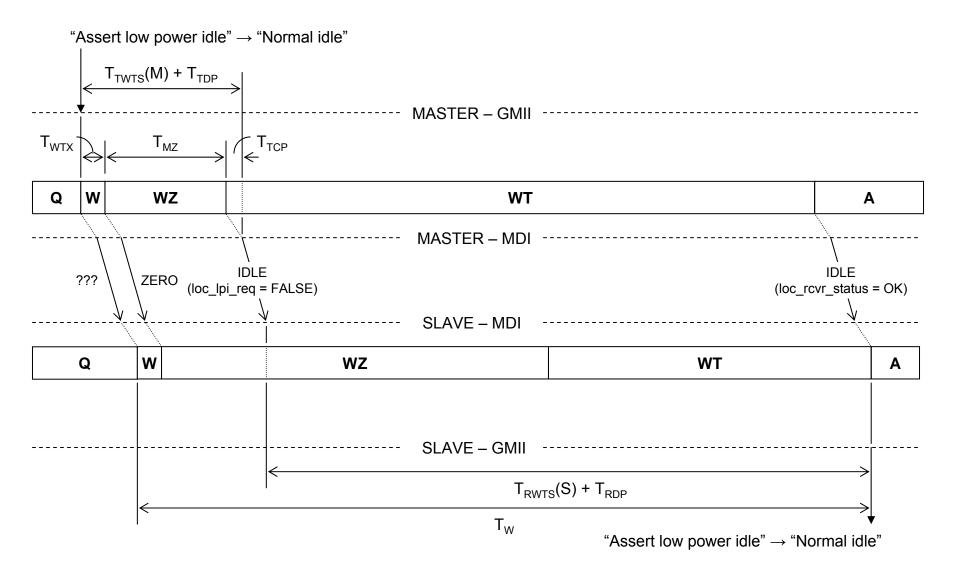
Start of wake signal – 1000BASE-T

- Wake is distinguished from refresh via the value of loc_lpi_req (received as rem_lpi_req) embedded in idle mode encoding
 – loc_lpi_req = FALSE indicates a request to wake
- Compliant idle mode signaling is not guaranteed until the PHY enters the WAKE_TRAINING state
- The initial wake transmission cannot reliably be used to differentiate a wake from a refresh
 - Its only purpose is to trigger the receiver's signal detector
- Thus, the "start of the wake signal" is proposed to be the start of transmission associated with entry into the WAKE_TRAINING state

Relevant timing parameters


Symbol	Description	Value	Units
T _{TWTS}	Alias for T _{PHY_SHRINK_TX}	TBD	
T _{RWTS}	Alias for T _{PHY_SHRINK_RX}	TBD	
T _{TDP}	Alias for T _{PHY_PROP_TX}	84	ns
T _{RDP}	Alias for T _{PHY_PROP_RX}	244	ns
T _{TCP}	PCS and PMA transmit latency for control information ¹	TBD	
T _{RCP}	PCS and PMA receive latency for control information ¹	TBD	
T _M	Media propagation delay	550	ns
T _w	PHY wake time	16	μS
T _{WTX}	Corresponds to Ipi_waketx_timer	1.2 – 1.4	μS
T _{MZ}	Corresponds to Ipi_wakemz_timer	5	μS
T _{sz}	The total time the SLAVE spends in WAKE_SILENT	TBD	

¹ Introduced to account for a potential difference in the latency of encoded and decoded variables (e.g. loc_lpi_req) and the normal latency for data originating from, or presented to, the GMII.


1000BASE-T wake scenarios

- There are a multiple starting points for 1000BASE-T wake
 - Wake from the SEND IDLE OR DATA state
 - Wake from the UPDATE state
 - Wake from the QUIET state
- Wake from the QUIET state will correspond to the largest WTS and should be the basis of the requirements
- In this scenario, WTS is a function of whether it is the MASTER or the SLAVE PHY that initiates wake

SLAVE initiates wake

MASTER initiates wake

Equations

- $T_{TWTS}(M) \leq T_{WTX} + T_{MZ} + (T_{TCP} T_{TDP})$
- $T_{TWTS}(S) \leq T_{WTX} + T_{SZ} + (T_{TCP} T_{TDP})$
- $T_{RWTS}(M) \leq T_W (T_{TWTS}(S) + T_{TDP}) T_M (T_{TCP} + T_M + T_{RCP}) T_{RDP}$
- $T_{RWTS}(S) \leq T_{W} (T_{TWTS}(M) + T_{TDP}) T_{M} T_{RDP}$

Summary

- This framework may be readily used to compute and define the 1000BASE-T PHY wake time shrinkage
- The "SLAVE initiates wake" scenario is the limiting case for the total PHY wake time shrinkage
- The maximum time that the SLAVE is allowed to remain in the WAKE_SILENT state is currently not bounded by the standard
- Limits on transmitter wake time shrinkage may indirectly bound this parameter