Active/Idle Toggling with Low-Power Idle

January 2008 IEEE 802.3az Task Force

> Presenter: Robert Hays Intel Corporation

Contributors: Aviad Wertheimer, Eric Mann

Supporters

- Ozdal Barkan (Marvell)
- Jim Barnette (Vitesse)
- Hugh Barrass (Cisco)
- Brad Booth (AMCC)
- Joseph Chou (Realtek)
- Dan Dove (HP ProCurve)
- Robert Hays (Intel)
- Adam Healey (LSI)
- Sanjay Kasturia (Teranetics)

- David Koenen (HP)
- David Law (3Com)
- Brian Murray (LSI)
- Gavin Parnaby (Solarflare)
- Wiren Perera (Plato Networks)
- Aviad Wertheimer (Intel)
- Bill Woodruff (Aquantia)
- George Zimmerman (Solarflare)

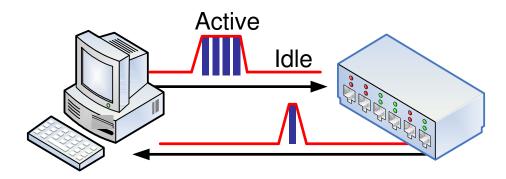
Agenda

- Updates from November (see hays_01_1107)
 - Glossary
 - Active/Idle Toggling Concept
 - Low-Power Idle Overview
 - Power Consumption
- 2. Elaboration on some Elements
 - Asymmetric Operation
 - Supporting Deep Sleep Levels
 - Auto-Negotiation
 - Initiating Transitions
- 3. Benefits of Active/Idle Toggling
- 4. Areas for Further Investigation

Glossary

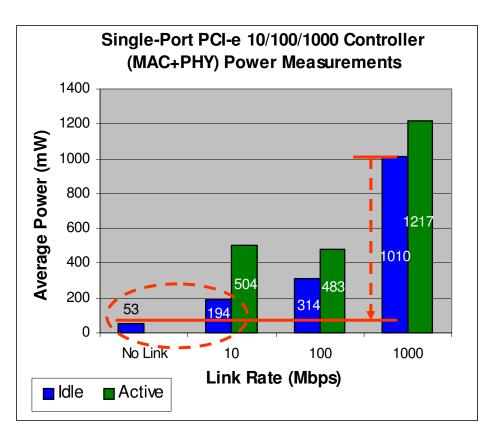
• Electrical Energy Terms:

- Operating Power (Watts) The rate at which electrical energy is delivered to a circuit or system
- Energy Consumption (Joules) Aggregate power consumed by a system over a period of time
- Energy Efficiency (Joules/bit) Energy required to complete a unit of work. E.g. energy required to transmit/receive each bit of data.
- Average Power (Watts) Energy consumed divided by period of time


• Ethernet Operating States:

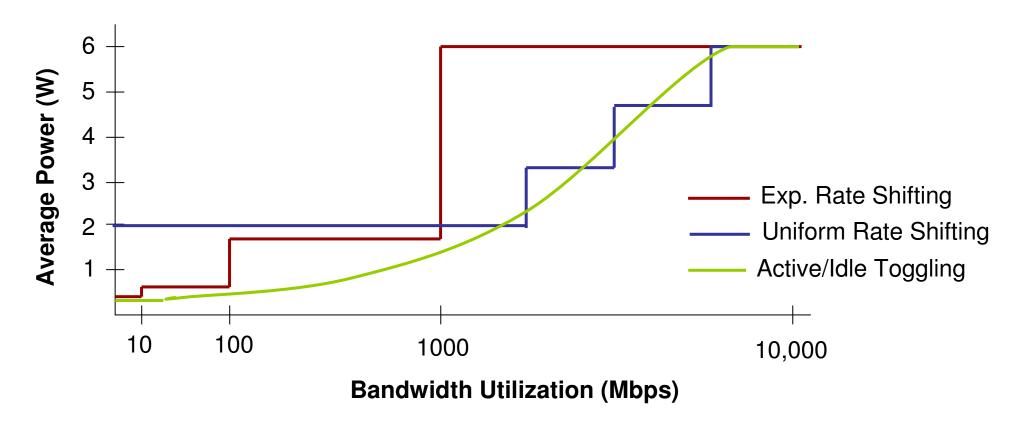
- Active Sending packets. Higher power. Defined today for all PHYs.
- Normal Idle (N_IDLE) Not sending packets. Same or less power than Active. Defined today as "Idle" for all PHYs.
- Low-Power Idle (LP_IDLE) Not sending packets. Minimal power. To be defined by IEEE 802.3az.

Active/Idle Toggling Concept


- Principle: Transmit data as fast as possible, return to Low-Power Idle
 - Highest rate provides the most energy-efficient transmission (Joules/bit)
 - LP_IDLE consumes minimal power (Watts)
- Energy savings come from cycling between Active & Low-Power Idle
 - Power is reduced by turning OFF unused circuits during LP_IDLE (e.g. portions of PHY, MAC, interconnects, memory, CPU)
 - Energy consumption scales with bandwidth utilization
- Transmitter initiates LP_IDLE transitions, Receiver acquiescent
 - Control policy is managed by system entity beyond IEEE 802.3 scope

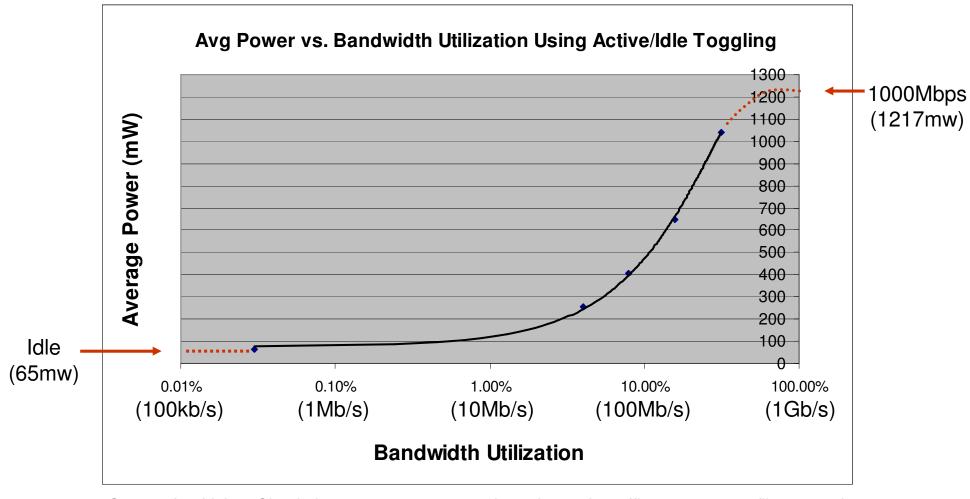
Low-Power Idle Overview

- LP_IDLE is a "quiet" line that consumes minimal power
 - It is used when no data is being transmitted
 - Only essential circuitry (e.g. timing recovery) must remain ON
- Rate-specific solutions required:
 - 100BASE-TX (see chou_01_0108)
 - 1000BASE-T (see healey_01_0108)
 - 10GBASE-T (see parnaby_01_0108)
 - 10GBASE-KR
 - 10GBASE-KX4
- Gigabit LP_IDLE power estimate:
 - "No Link" ≤ LP_IDLE ≤ 10Mbps Idle
 - e.g. $53mW \le LP_IDLE \le 194mW$
 - Should be closer to "No Link"



Source: Intel labs. Intel® 82573L Gigabit Ethernet Controller, 0.13µm, "Idle" = no traffic, "Active" = line-rate, bi-directional

Conceptual Average Power vs. BW Utilization

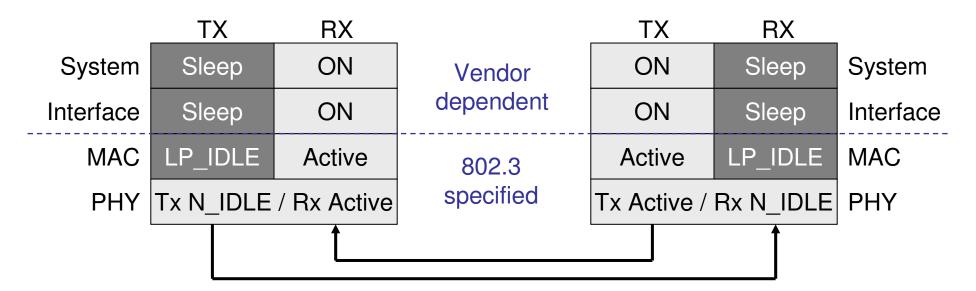


- Exponential Rate Shifting offers power steps at 1/10^{th,} 1/100th, 1/1000th rates for savings during periods of low-utilization (<10%)
- Uniform Rate Shifting offers power steps on 1/4th rate increments for savings during periods of medium to high utilization (25%-75%)
- Active/Idle Toggling with Low-Power Idle allows smooth power averaging across a broad range of bandwidth utilization (<80%?)

Simulated Active/Idle Toggling Avg. Power

Source: Intel labs. Simulation program source code and sample traffic pattern trace files posted on the EEE Tools web page: http://grouper.ieee.org/groups/802/3/az/public/tools/index.html

Input Assumptions:


- •Traffic Input = Trace_VOIP_*.txt
- ■1000Mbps Active Power = 1217mW
- •LP_IDLE Power = 65mW

- •LP_IDLE Initiation Wait = 10µs
- •LP_IDLE Transition Latency = 1µs
- Active Resume Latency = 10µs

Asymmetric Operation

- Asymmetric operation would further improve energy efficiency
 - Independent Tx & Rx transitions into LP_IDLE
 - End-node traffic is typically weighted toward either send or receive
- Asymmetric toggling is valuable at MAC-layer and above
 - Tx & Rx data paths already operate independently above the PHY
 - Transition initiation would need to occur between MACs
 - PHYs would only enter LP_IDLE if both Rx & Tx are in N_IDLE

Supporting Deeper Sleep Levels

Quick-Resume PC Longer-Resume PC Active PC Example Example (~10µs) Example (~100µs) M1 Standby (100µs) Memory M0 Active M0 Active Vendor dependent **PCle** L0s Standby (3µs) L1 Standby (6µs) L0 Active LP_IDLE (1µs) LP_IDLE (1µs) MAC **Active** 802.3 specified PHY **Active** LP IDLE (10 µs) LP IDLE (10µs)

Variable resume latencies allow performance vs. power optimization

4	Higher Performance	Lower Power
	Quicker Resume	Slower Resume

- Resume predictability allows more intelligent power management
 - Greater power savings doesn't come from just longer LP_IDLE duration, it comes from being able to <u>safely turn OFF/ON more circuitry</u>
 - Two ways to provide predictability:
 - Rx tells Tx how long to wait before sending data (via negotiated resume latency)
 - 2. Tx tells Rx how long it will be in LP_IDLE (via notification of sleep duration)

Auto-Negotiation

- Negotiate EEE capabilities during Auto-negotiation:
 - 1. EEE support for each speed
 - a. 10G
 - b. 1G full-duplex
 - c. 100M full-duplex
 - 2. LP_IDLE Resume Latency values
 - a. Maximum T_RESUME (may be specified by 802.3az)
 - b. Minimum T_RESUME (may be specified by 802.3az)
 - c. Desired T_RESUME
 - 3. Possibly... LP_IDLE Duration parameters:
 - a. Maximum T_LP_IDLE (PHY or system limitation)
 - b. Minimum T_LP_IDLE (for effective power saving)
- Updates (e.g. T_RESUME changes) could be negotiated via MAC control frames or other means

Initiating Transitions

- Transition control policy is managed by a system entity beyond IEEE 802.3 scope
- Transition initiated by Tx (data source), Rx acquiescent
 - 2-way negotiation or Acks are unnecessary
- Example transition to/from LP_IDLE:
 - 1. When no data to transmit, Tx signals entry into LP_IDLE
 - 2. Rx detects entry into LP_IDLE and may reduce it's power
 - 3. PHYs may periodically wake for Link Training
 - Training may only be necessary for some PHYs, e.g. 10GBASE-T
 - 4. When data to transmit, Tx PHY enters N_IDLE and MAC waits negotiated T_RESUME before beginning data transmission

Benefits of Active/Idle Toggling for EEE

- Reduced power during low utilization
- Energy consumption scales with bandwidth utilization
- Minimal impact to performance
- Turning circuits ON/OFF is easier than rate shifting
- Integrates well with PC & server power management
- Simple, one-way transition initiation
- May allow Asymmetric operation to save additional energy

Areas for Further Investigation

- Low-Power Idle state for each PHY type
- Negotiating resume latencies and/or LP_IDLE durations
- Transition signaling scheme
- MAC-PHY sync control
- Asymmetric operation

Thank You!

• Questions?

