

10GBase-T Active / Low-Power Idle Toggling

Gavin Parnaby George Zimmerman

Supporters

- Robert Hays (Intel)
- Brad Booth (AMCC)
- Brian Murray (LSI Logic)
- Adam Healey (LSI Logic)
- Dan Dove (ProCurve Networking by HP)
- George Zimmerman (Solarflare)
- Solarflare) (Solarflare)

Overview

- Introduction
- 10GBASE-T Low-Power Idle concept
- Details
- Signaling
- Power & Recovery time estimates
- Conclusions

10GBase-T low power idle concept

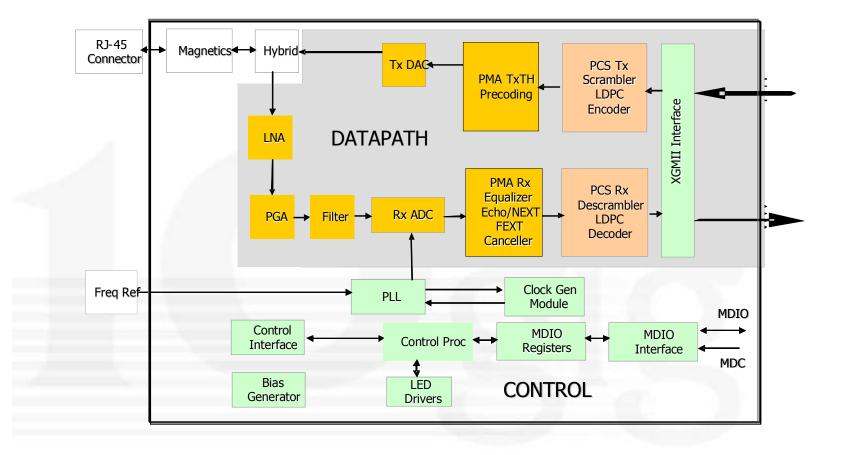
- Power down transmitter and receiver circuits when there is no data to be transferred, saving power
- PMA and PCS maintain synchronization to enable rapid return to full 10G rate
- Refresh coefficients using periodic LDPC frame(s)
 - Multiple off/on rates supported to trade off power vs response time
- Receiver powers up in time to receive the frame, which contains control codewords to maintain sleep / wake up PHY

Details

- Add a counting state machine for low power LP IDLE mode to wake up periodically
 - Turn off receivers, transmitters for N frames [Solarflare lab work shows] static coefficients can maintain link for up to 3 minutes; 1 min equiv to N=200e6]; N selected from 10,100,400,1000
 - Turn on receiver (or transmitter) on schedule for M frames (M is selected from 1, 4)
 - Refresh timing / coefficients in PAM-16 (no infofield exchange)
 - M frames (resolved by PHYs during autoneg)
 - Check for "wake-up" codeword (N IDLE) / or stay in low power idle mode (LP IDLE)
 - Transition back to active mode or go back to "counting sleep" depending on control received
 - Maintains PMA & PCS structures
 - Vendor-dependent hardware scheduling

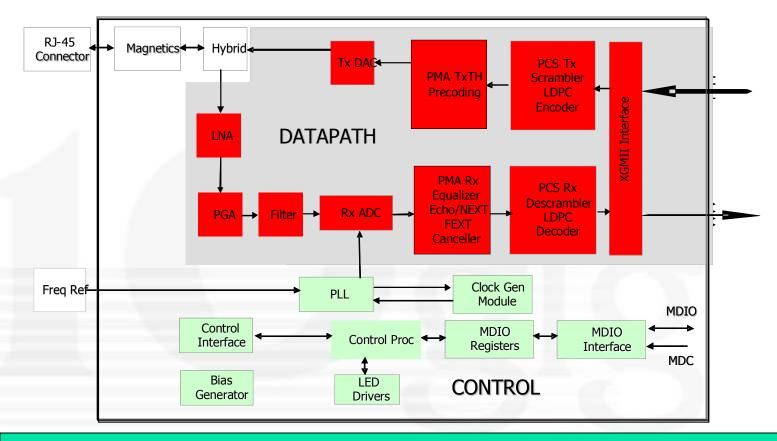
Signaling (I)

- Autoneg advertises EEE capability
 - Exchange next pages (XNP)
 - Advertise max LP IDLE time and minimum N IDLE time; implementation dependent
 - Resolve N and M
 - M frames of LDPC (ON) (suggest M=1/4)
 - N frames of quiet (OFF) (suggest) N=10/100/400/1000)
 - Advertise maximum recovery time other end needs to know when to start sending data after wake up call; preferably the next frame



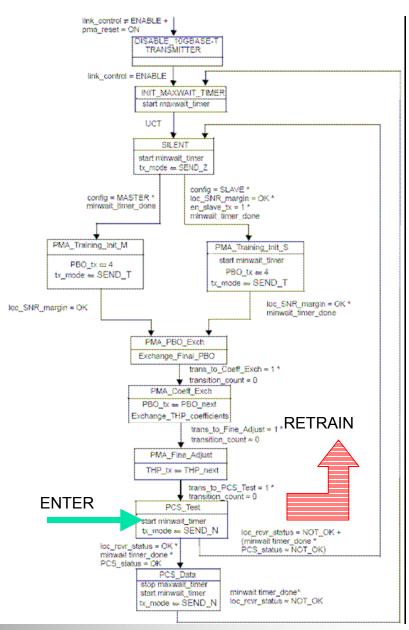
Signaling (II)

- Use XGMII interface to encode Normal idle vs EEE Low power idle
- See Dan Dove presentation
- PCS detects LP IDLE control code on XGMII / from rx data and transitions PHY to EEE mode (or maintains EEE mode if already enabled)
- PCS detects N IDLE control code and transitions back to full 10GBASE-T mode
 - Recommend symmetric operation
- Lower latency for on/off with this approach vs MAC controlling PHY via MDIO or fast start-up
- Scramblers are left on with zero input to maintain state



10GBASE-T Transceiver - On state

10GBASE-T Transceiver – Low Power Idle state



RED BLOCKS ARE POWERED DOWN OR HAVE CLOCKS GATED BETWEEN PULSED FRAMES

Restart Sequence

- 10GBASE-T PHY Control State Machine (Fig. 55.4.6.1)
- Entrance point for EEE staterestore:
 - PCS_Test (1msec fixed)
 - Required to maintain link quality
 - Test time limited by desire to see enough LDPC frames
- Full retrain triggered if PCS_Test fails
- Forces min time in normal mode > 1ms

Power Estimates

- Off_frame power: P_off = P_clkgen+P_ctl+P_ovr
 - P_ovr: vendor-specific overhead for leakage & housekeeping (e.g., MDIO) needed in ANY low-power state
 - Current designs conservative estimate: 15% of total power
 - Leakage as normal and overhead circuitry is kept at full activity
 - Can be reduced
 - Higher than assumptions in diab_2_0907
- Deep_Sleep_Idle_frame power: P_on= P_nominal P_LDPC-P_ENX
 - Current designs estimate: 65% nominal power
 - Consistent with overhead+50% analog assumption of diab_2_0907
- 1:N frame decimation gives:
 - P_deep_sleep_idle: [(N-1)*P_off + (P_on)] / N
- 1:10 frame decimation, (equiv 1G traffic load)
 - № P= [9*.15+.65] /10 = 20% of nominal 10G PHY power level

Recovery Time

- Low Power Idle transition time will be limited by startup/"sync" time
 - Maintain PCS and PMA synchronization
 - Enable blind return to high rate
 - Limited only by block sizes, latency and prop delay
- Bring-up time = T_interface sync + T_latency + T_next_frame
 - T_latency (10GBASE-T) = 2.5usec
 - T_interface sync = negligible
 - Time to next frame: T_next_frame can be negotiated
 - Longer times allow deeper power down (leakage & overhead savings)
 - Shorter times allow faster transition, less savings
 - Examples:
 - 1:10 T_next_active_frame= 3.2usec, 20% nom pwr
 - 1:1000 − T_next_active_frame = 320usec, 8% nom pwr
 - Longer times enable greater overhead savings; full power down
 - Allow at least x10 steps
- Enables < 10 usec transitions, with significant power savings</p>

Open issues

- Resolving negotiation of M "on frames" per N "off frames"
 - Advertise support within small set
 - Pick N,M using resolution matrix
 - Allows PHYs to trade off wake up latency vs block size
- Support for asymmetric operation (recommend symmetric only)
 - Timing synchronization with tx/rx and adaptive filters adds complexity

Conclusions

- Low Power Idles can be structured by periodic transmission of LDPC frames
 - Solution Strain Str
 - Uses existing PCS and PMA with minimal "flywheel" logic
- Rate control through MAC control words
- 10 usec-scale recovery times are achievable
- Achieves adjustable efficiency better than 10X improvement for the PHY
 - Much better for the entire system