

1000BASE-T PHY Control State Diagram Modifications

Niall Fitzgerald, Adam Healey, Brian Murray, Jacobo Riesco LSI Corporation

Presented by Adam Healey IEEE P802.3az Task Force Meeting New Orleans, LA January 2009

Comments #98 and #101: Problem statement

- PHY Control state diagram allows a transition from UPDATE to WAKE to be forced at any time by the assertion of loc_lpi_req = FALSE
 - This results in continued transmission for lpi_waketx_timer followed by a period of silence (tx_mode = SEND_Z) no less than lpi_wakemz_timer
- This implies that the link partner's update of timing and adaptive filter coefficients could be interrupted at any time
 - Additional implementation constraint
- This permits pathological timing scenarios where LP_IDLE is asserted at the GMII such that the PHYs transitions to the UPDATE state and then LP_IDLE is de-asserted forcing the link partner to abort update of timing and adaptive filter coefficients
 - Repetitions of this timing cycle can starve the PHY of essential updates and degrade link performance
 - This issue could also be addressed by enforcing a minimum period that the "LPI client" must assert LP_IDLE

Approaches to comments #98 and #101 – 1

- Define the minimum time the "LPI client" must assert LP_IDLE
 - To ensure that both the local device and link partner both enjoy a period of uninterrupted transmission of a least lpi_update_timer (T_u)
 - No less than $2T_u(\min) + T_w(\min)$, where T_w corresponds to lpi_wake_timer
 - No less than 376 microseconds
 - This translates directly to the size of the buffer that must be maintained by the transmitter
- Define the minimum time the client must wait between de-asserting LP_IDLE and asserting LP_IDLE again
 - Again, to ensure a period lpi_update_timer of uninterrupted transmission
 - No less than the minimum value of T_{μ} (180 microseconds)

Approaches to comments #98 and #101 – 2

- However, these rules really address an issue with the 1000BASE-T PHY Control state diagram
 - Appropriate changes to the PHY Control state diagram would ensure proper operation of the PHY without any additional restrictions on the client
 - Avoid unwanted dependencies between proper operation of the client and proper operation of the PHY
 - Client does not need to make special provisions for a 1000BASE-T PHY
 - Address the root cause of the issue rather than consider work-arounds

Summary of proposed changes

- Introduce new POST_UPDATE state, succeeding the UPDATE state, controlling transitions into WAIT_QUIET or SEND IDLE OR DATA
- Restore lpi_mode to its Draft 1.0 definition
- Introduce new variable loc_update_done
 - Indicates completion of timing and adaptive filter coefficient updates
 - Assigned a value of FALSE prior to entering the UPDATE state
 - Assigned a value of TRUE in the POST_UPDATE state
 - Communicated to the link partner and received as rem_update_done
 - Use the same encoding rules adopted for loc_lpi_mode (possibly modified by comment #100)
- Remove the transition from WAKE_TRAINING to WAKE_SILENT
 - It was added to combat a fall-through case in the Draft 1.0 state diagram which no longer exists in Draft 1.1
- Remove lpi_waitwt_timer
 - It was added to combat a fall-through case in the Draft 1.0 state diagram which no longer exists in Draft 1.1

Healey 1/14/2009

IEEE P802.3az Task Force

LSI 🎇

Highlights

- A direct transition is provided from UPDATE (or POST_UPDATE) to SEND IDLE OR DATA if the link partner has not yet completed filter coefficient updates (e.g. rem_update_done = FALSE)
 - Update of adaptive filter coefficients may continue uninterrupted
- When the remote PHY has signaled completion of update then the transition through to the wake sequence is possible
- Duration of lpi_postupdate_timer is required to be greater than one round-trip delay
 - Propose a range of 2.0 and 2.2 microseconds
- If loc_lpi_req = FALSE during POST_UPDATE, then the local device must wait for rem_update_done = TRUE before proceeding to WAKE
 - This will not add time to the overall wake time budget

Notes on comments #12 and #87

- Proposed state diagram also addresses corner cases pointed out in comments #12 and #87
- It does not get stuck in the UPDATE state
- There are no ambiguous state transitions
 - Decoded variables rem_lpi_req and rem_lpi_mode are not AND'ed with the condition signal_detect = FALSE
 - Requires one to assume default values for rem_lpi_req and rem_lpi_mode since they cannot be derived
- It does not suffer from the "out-of-sync" condition possible from the Draft 1.1 state diagram

Ambiguous transition in Draft 1.1 state diagram

- Transition condition from UPDATE to WAIT_QUIET includes the term rem_lpi_mode = ON * signal_detect = FALSE
- How can rem_lpi_mode be detected when there is no signal present?
 - What value of rem_lpi_mode should be assumed?

Comment #12: Stuck in update

- Condition could modified to remove this ambiguity
- signal_detect = FALSE + lpi_update_timer_done + rem_lpi_mode = ON * (loc_lpi_req = FALSE + rem_lpi_req = FALSE)
- Correction eliminates corner cases pointed out in Comment #12
- Correction already presented in the proposed state diagram
 - POST_UPDATE to WAIT_QUIET

Comment #87: Corrected by proposed state diagram

Healey 1/14/2009

IEEE P802.3az Task Force

LSI 🖏

Comments #98 and #101: Summary

- Proposed state diagram addresses comments #12, #87, #98, and #101
- Eliminates a timer and state transition that were made obsolete by changes from Draft 1.0 to Draft 1.1.

Comment #102: Problem statement – 1

- What are the consequences of not completing wake within the allotted time?
 - Completion of wake is defined as the point when both loc_rcvr_status and rem_rcvr_status are OK
- Packet(s) transmitted immediately after lpi_wake_timer_done are lost
 - tx_mode ≠ SEND_N until wake is complete, inhibiting the transmission of frames
 - For this reason, it is <u>imperative</u> to set PHY parameters so that the chances of failing to complete wake within the allotted time are <u>very small</u>
 - For all practical purposes, the probability of failing to wake should be less than the target probability of packet error
- During a refresh or when system wake time greatly exceeds the PHY wake time, the consequences are minor
 - No data loss, perhaps a very small compromise of power savings

Comment #102: Problem statement – 2

- Failure to achieve both loc_rcvr_status = OK and rem_rcvr_status = OK prior to lpi_wake_timer_done causes PHY Control to transition to the SLAVE SILENT state and initiate re-training
 - This will correspond to an interruption of service spanning <u>hundreds of</u> <u>milliseconds</u>
- Consequences are considerably more severe in all cases when retraining is enforced
- Even though such event should be rare, the same could be said of frequency of a packet error during normal operation
 - During normal operation, the link is not restarted for every packet error

Comment #102: Summary of proposal

- Use lpi_wake_timer to monitor the health of the link
 - Define that lpi_wake_timer_done causes a new counter, "1000BASE-T wake error," to be incremented
 - Counter is represented in the Clause 45 management register space and is cleared on read
 - System management reads the counter to understand if the link is failing to recover from low-power mode within the allotted time and takes corrective actions as necessary
- Define a new timer, lpi_link_fail_timer
 - Functionally replaces lpi_wake_timer in the PHY Control state diagram, e.g. expiration triggers re-training
 - Started in the WAKE state
 - Propose timer value to be 90 to 110 microseconds
- Add action "Stop lpi_wake_timer" to SEND IDLE OR DATA to prevent lpi_wake_timer_done from being satisfied after completion of wake

Questions?

Back-up slides

Wake from UPDATE

Healey 1/14/2009

Wake from POST_UPDATE – 1

Wake from POST_UPDATE – 2

Enter QUIET from POST_UPDATE

Healey 1/14/2009

IEEE P802.3az Task Force

22

Update starvation: Draft 1.1 timing analysis – 1

Healey 1/14/2009

IEEE P802.3az Task Force

23

LSI

Update starvation: Draft 1.1 timing analysis – 2

Healey 1/14/2009

IEEE P802.3az Task Force

24

LSI

Update starvation: Draft 1.1 timing analysis – 3

Healey 1/14/2009