

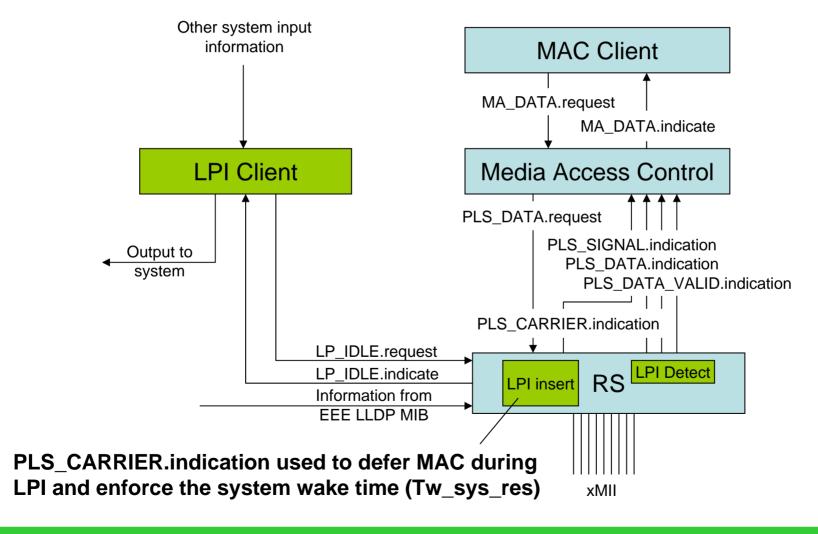
IEEE P802.3az Wait time (Tw) from a system design perspective

David Law 3Com

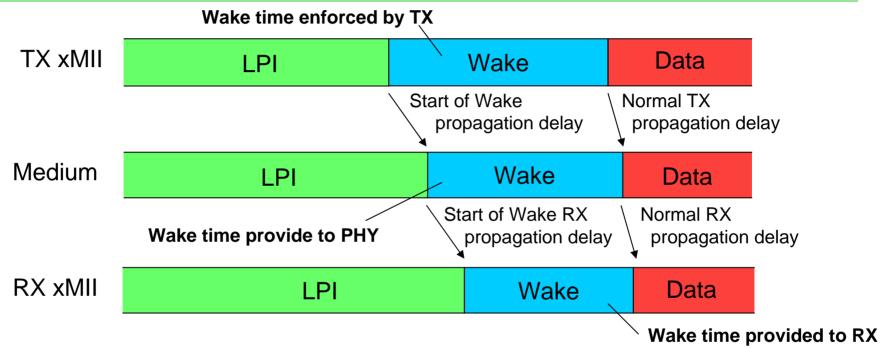
David_Law@3Com.com

Contributor and comment

Adam Healey LSI

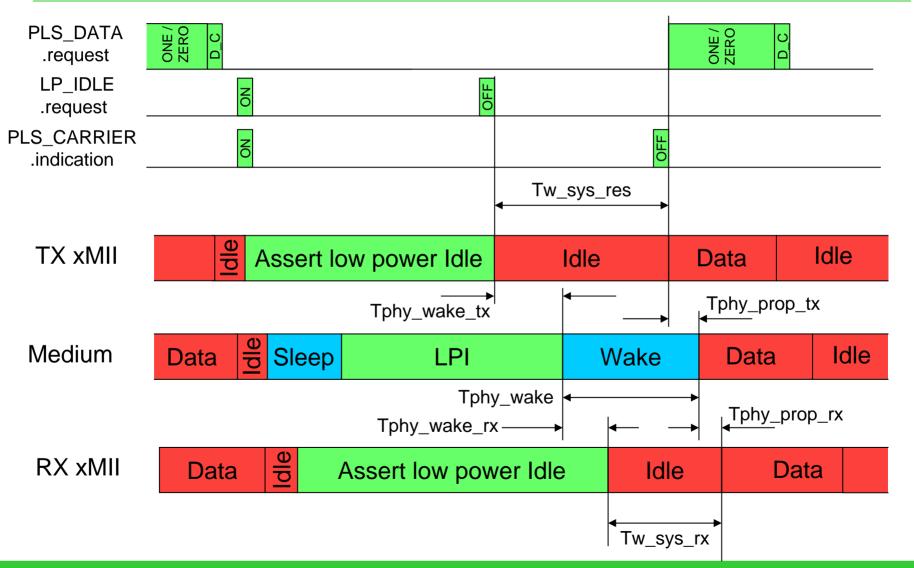

EEE wait time design information

- To design system 'above' xMII need
 - The longest time the TX system will ever have to wait between a request to transmit and actually being able to transmit
 - Currently called 'Transmit Tw' (see 78.4.2.1)
 - Will use Tw_sys_tx as shorthand in this presentation
 - The shortest time the RX system will ever be given between a request to wake and being able to receive
 - Currently called 'Receive Tw' (see 78.4.2.2)
 - Will use Tw_sys_rx as shorthand in this presentation

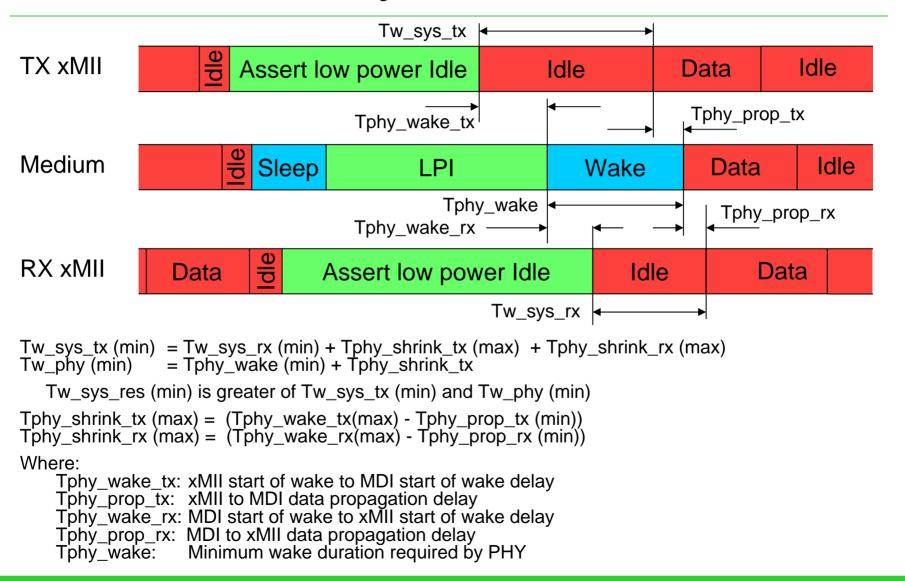

EEE wait time during operation

- During operation system 'above' xMII needs
 - The shortest time the TX system has to wait between a request to transmit and actually being able to transmit
 - Currently called 'Resolved Transmit Tw_sys' (see 78.4.2.3)
 - Will use Tw_sys_res as shorthand in this presentation
 - Value enforced by RS
 - Based on vote at November plenary meeting this value is enforced by using PLS_CARRIER.indication to defer the MAC during LPI and wake time (see 22.7.1)
 - Start-up value based on PHY Type
 - Some PHYs determine value during Auto-Neg (see 55.6.3)
 - May be changed though LLDP exchanges (optional)

System architecture review



Wake time propagation - overview

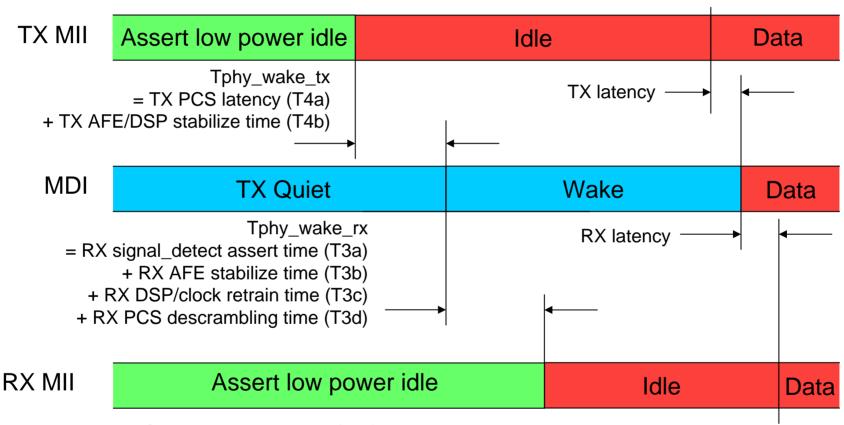


- Mismatch between wake and normal propagation delay
 - If wake propagation delay is greater, then this results in wait time shrinkage
 - If wake propagation delay is less, then this results in wait time growth
 - RX and PHY wake times different from TX wake time enforced by RS
- Greater of RX and PHY minimum wake times determines TX wake time
 - RX minimum wake time likely rate dependant
 - PHY minimum wake time PHY type (100BASE-T, 1000BASE-T, etc) dependant

Wake time propagation - detail

Minimum System wake time

Requirements for interoperability


For the system

- Specify default minimum wake to be enforced by system TX
 - Tw_sys_res (min)
 - Derived from greater of PHY or default system RX minimum wake time
- Specify default minimum wake time provided to system RX
 - Tw_sys_rx (min)
 - In some cases may be greater than that provided by the PHY

For each PHY type

- Separate normative PHY TX and RX shrinkage values required
 - A single value would not ensure interoperability as differing allocation between TX and RX by different vendors
- Specify maximum wake shrinkage on TX
 - Tphy_shrink_tx (max)
- Specify maximum wake shrinkage on RX
 - Tphy_shrink_rx (max)
- Specify the minimum wake time required by PHY
 - Tw_phy (min) (this is different from definition currently in draft)

Example:100BASE-T

For 100BASE-T PHY Tphy_wake (min) = Tphy_wake_rx

Reference for worst-case: Timing parameters of LPI 100BASE-T

Joesph Chou, Realtek

http://www.ieee802.org/3/az/public/jul08/chou_02_0708.pdf

100BASE-T calculations

```
Tphy_wake_tx = TX PCS latency (T4a) + TX AFE/DSP stabilize time (T4b)
                = 0.1 + 5 = 5.1 \text{ us (max)}
Tphy_shrink_tx = Tphy_wake_tx - Tphy_prop_tx
                = 5.1 us - TX latency (assume 0.1us based on T4a)
                = 5 \text{ us (max)}
Tphy wake rx
                = RX signal_detect assert time (T3a)
                + RX AFE stabilize time (T3b)
                + RX DSP/clock retrain time (T3c)
                + RX PCS descrambling time (T3d)
                = 5 + 5 + 5 + 0.5 = 15.5us (max)
Tphy_shrink_rx = Tphy_wake_rx - Tphy_prop_rx
                = 15.5 us - TX latency (assume 0.5us based on T3d)
                = 15 \text{ us (max)}
                = Tw_sys_rx + Tphy_shrink_tx + Tphy_shrink_rx
Tw_sys_tx
                = Tw_sys_rx + 5 + 15
                = Tw_sys_rx + 20us
                = Tphy_wake (min) + Tphy_shrink_tx
Tw_phy
                = 15.5 + 5 = 20.5us
```

100BASE-T wait time summary

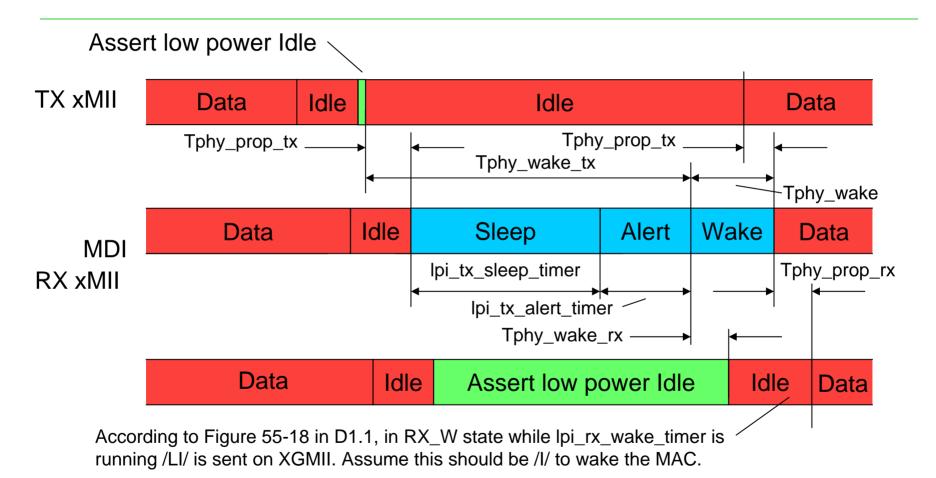
PHY	Tw_sys_res	Tw_phy	Tphy_shrink_tx	Tphy_shrink_rx	Tw_sys_rx
	default (min)	(min)	(max)	(max)	default (min)
100BASE-T	Greater of 20.5us or TBD + 20us	20.5us	5us	15us	TBD

 Current draft specifies Tw_phy min as 30us (Table 78-2) to be used as default transmit wait time (78.4.2.1)

Completing table based on current draft

PHY	Tw_sys_res	Tw_phy	Tphy_shrink_tx	Tphy_shrink_rx	Tw_sys_rx
	default (min)	(min)	(max)	(max)	default (min)
100BASE-T	30us	20.5us	5us	15us	10us

100BASE-T wake times


- Based on current draft and calculations above
- Default values

```
Tw_sys_tx 30us [Wake time to be enforced by RS]
```

Tw_sys_rx 10us [Wake time provided to RX system]

- LLDP rules (revised from those in draft)
 - $Tw_sys_res > Tw_phy (20.5us)$
 - PHY must always have sufficient wake time
 - Tw_sys_res greater of local Tw_sys_tx or (link partner Tw_sys_rx + Tphy_shrink_tx + Tphy_shrink_rx)
 - Tw_sys_rx received via LLDP, needs to be adjusted to take account of wake shrinkage before comparing to Tw_sys_tx

Worst case10GBASE-T

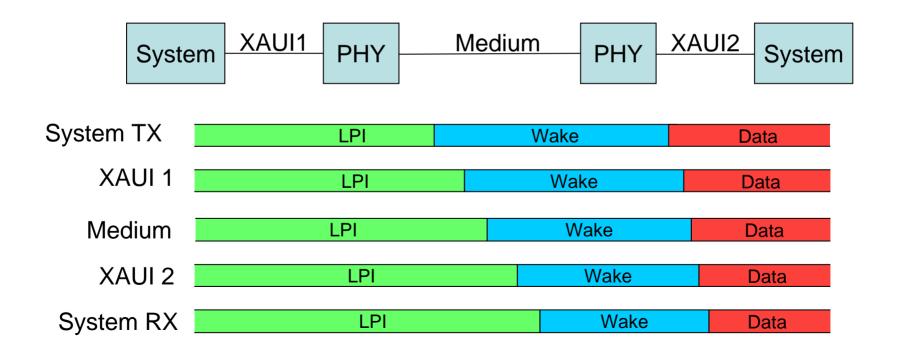
Reference for worst-case: EEE P802.3az/D1.0 Clause 55 PHY Wake Time

Mike Grimwood, Broadcom

http://www.ieee802.org/3/az/public/nov08/grimwood_03_1108.pdf

10GBASE-T calculation

```
Tphy_wake_tx = Tphy_prop_tx + lpi_tx_sleep_timer + lpi_tx_alert_timer
                = Tphy_prop_tx + 10 LDPC frames + 4 LDPC frames
                = Tphy_prop_tx + 3.20us + 1.28us
                = Tphy prop tx + 4.48 us
Tphy_shrink_tx = Tphy_wake_tx - Tphy_prop_tx
                = Tphy prop tx + 4.48 us - Tphy prop tx
                = 4.48 \text{ us}
Tphy_wake_rx = Tphy_prop_rx
Tphy shrink rx = Tphy wake rx - Tphy prop rx
                = 0us
                = Tphy_wake + Tphy_shrink_tx
Tw_phy
                = 2.88 us + 4.48 us (lpi_tx_wake_timer 9 LDPC frames max)
                = 7.36 \text{ us}
Note – Minimum wait time provided to RX system by PHY is 1 LDPC frame
        as lpi tx wake timer is 1 LDPC frame minimum
```


10GBASE-T wait time summary

PHY	Tw_sys_res (min)	Tw_phy (min)	Tphy_shrink_tx (max)	Tphy_shrink_rx (max)	Tw_sys_rx (min)
10GBASE-T	Greater of 7.36us or TDB + 4.48us	7.36us to 4.8us	4.48us	0us	TBD

- TX wait shrinkage but no RX wait shrinkage
 - Worst case occurs when the PHY hasn't entered Quiet
- Could the RS be used to compensate for this
 - Enforce a minimum LPI assert time in RS for 10GBASE-T
 - Once this is over the required shrinkage time is likely smaller
 - No need to compensate for large TX wait shrinkage once in Quiet
 - Other 10Gb/s PHYs can set minimum time to zero

Possible interface EEE modes

- Should we make provision in shrinkage time for interfaces?
 - If provision isn't made now in may prevent future optimal EEE support
 - Examples of interfaces that could provide EEE support
 - XAUI, SGMII (although not specified in IEEE Std 802.3)

Conclusions

- Need to calculate values as described for all PHYs
 - Tw_sys_res default (min), Tw_phy (min), Tphy_shrink_tx (max),
 Tphy_shrink_rx (max), Tw_sys_rx default (min)
 - Seem to be missing minimum system wake times
 - Decide if margin is provided for interface EEE modes in future
- Suggest forming an adhoc to complete this work
- Suggest the following renaming for clarity

```
Transmit Tw-> Tw_sys_tx
```

- Receive Tw -> Tw_sys_rx
- Resolved Transmit Tw_sys -> Tw_sys
- Define Tw_phy as only the minimum time to wake the PHY
- Need to adjust LLDP values to accommodate shrinkage
- 10GBASE-T
 - While Ipi_rx_wake_timer is running send /I/ to wake the MAC
 (Note this is the ONLY change I am proposing to ANY EEE PHY)
 - Consider minimum LPI enforcement in RS to optimise wake times