

IEEE 802.3az Energy Efficient Ethernet

Task Force Update

Presented to the P802.3ba Task Force

Denver, CO July 16, 2008

Mike Bennett mjbennett@ieee.org

Discussion

Brief overview of Energy Efficient Ethernet (EEE)

- IEEE P802.3az current status
- Things to consider

Briefly, what is EEE?

EEE is a method to facilitate transition to and from lower power consumption in response to changes in network demand

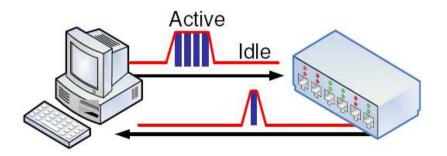
□In the process of being defined for these copper PHYs

- 100BASE-TX (Full Duplex)
- 1000BASE-T (Full Duplex)
- 10GBASE-T

Expecting to adopt proposals for backplane PHYs this week

10GBASE-KR

10GBASE-KX4

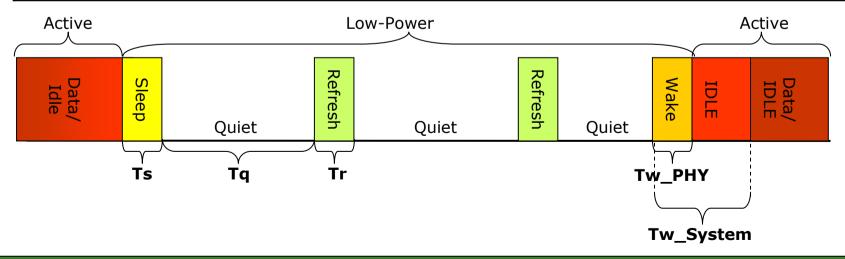

□Uses Low Power Idle (LPI) to save energy

What is Low Power Idle?

- Concept: Transmit data as fast as possible, return to Low-Power Idle
- Saves energy by cycling between Active and Low Power Idle

Power reduced by turning off unused circuits during LPI

Energy use scales with bandwidth utilization



What is Low Power Idle?

A closer look

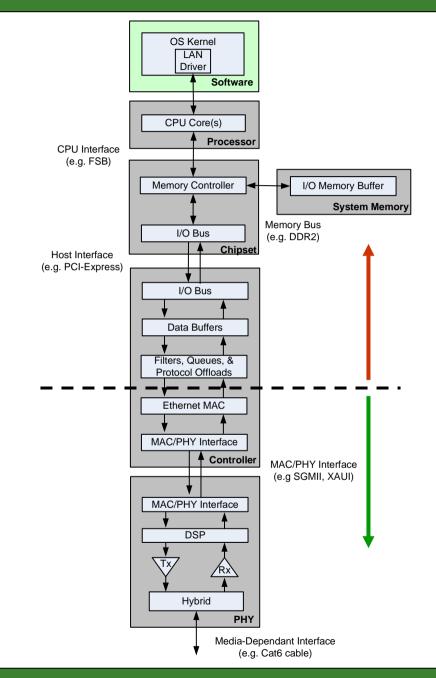
□We've been talking about Tw values around 10 usec

Term	Description
Sleep Time (Ts)	Duration PHY sends Sleep symbols before going Quiet.
Quiet Duration (Tq)	Duration PHY remains Quiet before it must wake for Refresh period.
Refresh Duration (Tr)	Duration PHY sends Refresh symbols for timing recovery and coefficient synchronization.
PHY Wake Time (Tw_PHY)	Duration PHY takes to resume to Active state after decision to Wake.
System Wake Time (Tw_System)	Wait period where no data is transmitted to give the receiving system time to wake up.

A system view

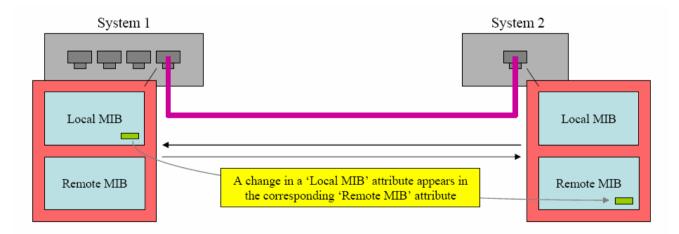
Outside the scope of our work

Control policySystem power savings

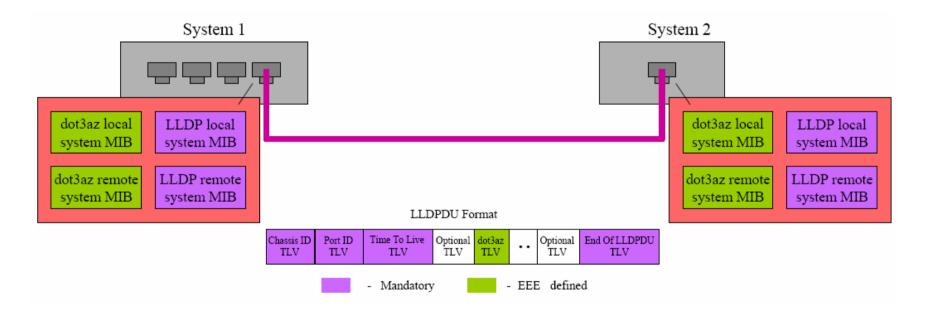

In scope

□PHY power savings

□Auto-negotiation


Management

Protocol to communicate parameter changes


Link partner communication

- Will use auto-negotiation to notify link partner of EEE capabilities
- Will use LLDP to notify link partner of parameter changes
 - **E**.g. control policy
 - User can choose energy savings preferred over performance or vice versa

LLDP

We'll need to define LLDP MIB extension and TLVs as well as an EEE MIB

Current status

We've adopted several proposals for our baseline

□Reduced Amplitude 10BASE-T

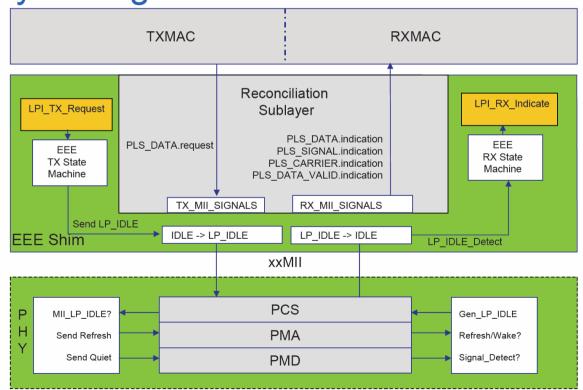
Low Power Idle (LPI) for 100BASE-TX

LPI for 1000BASE-T

LPI for 10GBASE-T

□Use of LLDP to communicate between link partners after auto-negotiation

We have an editor's draft incorporating these proposals


Current status

- We're considering backplane proposals for our baseline
 - 10GBASE-KR
 10GBASE-KX4
 - □1000BASE-KX
 - The work is being done, will likely add an objective
- Assuming we get through the remaining proposals this week
 - □We'll bring in the material from the new proposals for review in September
 - Focus on
 - filling in TBDs and holes in the draft
 - Possibly Modifications to the Reconciliation Sublayer and MIBs

Things to consider

- LPI is "architecture agnostic"
 - □ It will work on a serial interface
 - □ It will work on a multi-channel interface

Layer Diagram

Things to consider

The question about applying EEE to optics has come up a few times

□We don't have objectives for optical PHYs

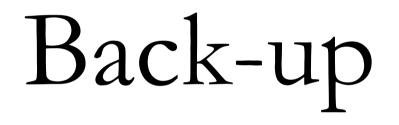
Doesn't necessarily mean this can't be applied to optical PHYs

Suggested in Onn Haran's Applicability of EEE to Fiber

PHYs http://www.ieee802.org/3/eee_study/public/sep07/haran_1_0907.pdf

Interesting idea – just may have been premature

Can you "gate" optics and still achieve reliable operation?


We didn't study this

Things to consider

- Latency
 - EEE operational mode adds additional latency to be considered by the network designer
 - ❑ When at Low Power Mode, PHY device is not available immediately for data transmission request.
 - System has to wake it up by sending normal idle code on the MAC interface.
 - Following IDLE code reception on the MAC interface, PHY starts waking up process.
 - The max PHY recovery time Tw is different for different PHY types

Thank You!

Objectives

Define a mechanism to reduce power consumption during periods of low link utilization for the following PHYs

- 100BASE-TX (Full Duplex)
- 1000BASE-T (Full Duplex)
- 10GBASE-T
- 10GBASE-KR
- 10GBASE-KX4
- Define a protocol to coordinate transitions to or from a lower level of power consumption
- □ The link status should not change as a result of the transition
- No frames in transit shall be dropped or corrupted during the transition to and from the lower level of power consumption
- The transition time to and from the lower level of power consumption should be transparent to upper layer protocols and applications
- Define a 10 megabit PHY with a reduced transmit amplitude requirement such that it shall be fully interoperable with legacy 10BASE-T PHYs over 100 m of Class D (Category 5) or better cabling to enable reduced power implementations
- Any new twisted-pair and/or backplane PHY for EEE shall include legacy compatible auto negotiation