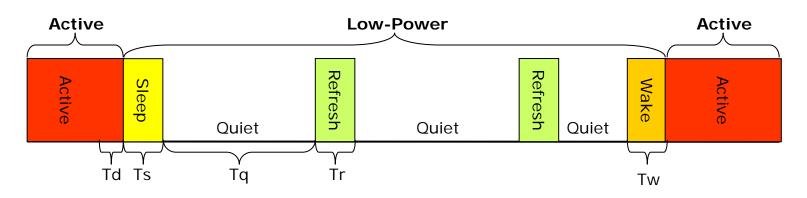

#### Backplane Ethernet Low-Power Idle Baseline Proposal

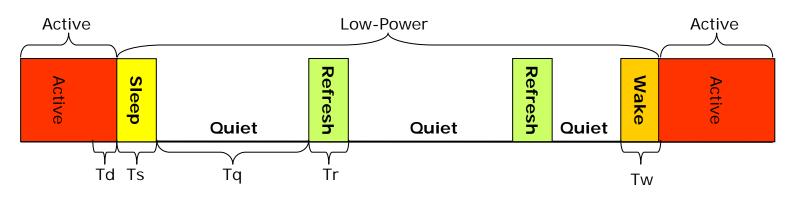
David Koenen, HP July 2008


#### **Backplane PHYs**



#### Backplane LPI

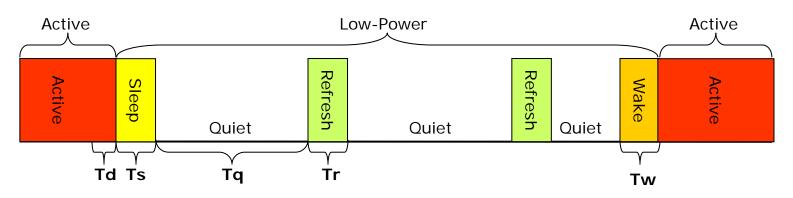
- Transmitter goes pre-determined level during quiet state
  - Similar concept to PCIe specification L2,L3 states
- Refresh operation
  - KR to use training mode during refresh cycle
  - KX4 and KX to use set idle pattern
  - KR FEC not refreshed
- Sleep transition
  - Fairly simple after the request is indicated
- Wake transition
  - 10GBASE-KR has greater latency due to coding scheme & FEC
  - KR is multi-staged to decrease synchronization requirements
  - KX4/KX use wake pattern to re-sync the link


## **LPI Operating States**



| Term            | Description                                                                                                       |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------|--|
| Active state    | Existing state used for data transmission where either data packets or IPG/Idle symbols are transmitted.          |  |
| Low-Power state | New state used during periods of no data transmission to allow system power reduction between data packet bursts. |  |

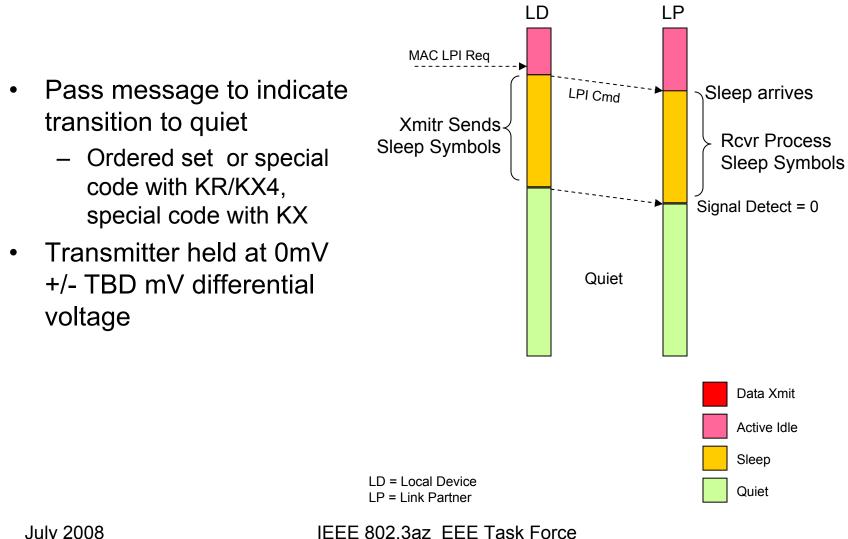
• No change to this concept with backplane LPI


## LPI New Line Signals



| Term    | Description                                                                                    |  |
|---------|------------------------------------------------------------------------------------------------|--|
| Sleep   | Signal to inform link partner of entry into low power state                                    |  |
| Quiet   | Steady state, no transitions                                                                   |  |
| Refresh | Periodic signal during low power state for PHY to maintain timing recovery and/or coefficients |  |
| Wake    | Signal to inform link partner of entry back into active state                                  |  |

• Same concept as with BASE-T technologies


# **LPI Timing Parameters**



| Term                   | Description                                                         |  |
|------------------------|---------------------------------------------------------------------|--|
| Decision Time (Td)     | Higher-layer control policy timing; out of scope                    |  |
| Sleep Time (Ts)        | Min. duration Sleep symbols sent before going to Quiet              |  |
| Quiet Duration (Tq)    | Max. duration PHY remains Quiet before Refresh                      |  |
| Refresh Duration (Tr)  | Min. duration PHY sends Refresh symbols                             |  |
| Wake Time (Tw)         | ake Time (Tw) Max. period to permit the receiving system to wake up |  |
| Propagation Delay (Tp) | Max. transmission delay of the media                                |  |

• No change to this concept with backplane LPI

### Entering Quiet Mode



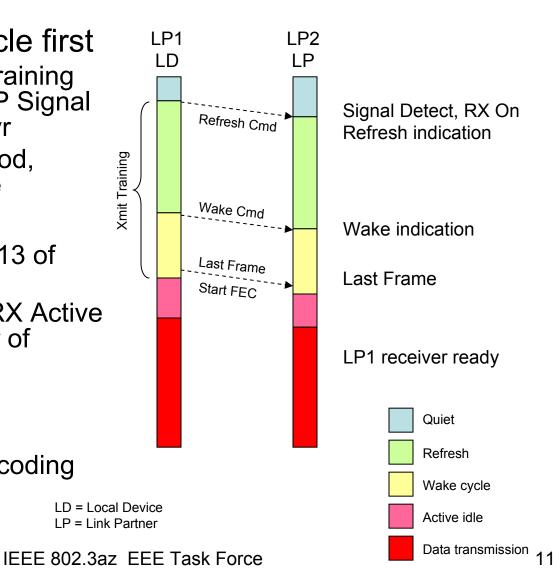
#### Refresh Cycle

- KR
  - Use of training mode
  - Cell 14 of status report field changed from Reserved to be Refresh
- KX4
  - Use of KAR idle pattern only on lane 0
  - Lack of signals on lanes 1-3 indicates a refresh state
- KX
  - Per dove\_02\_05\_08.pdf, slide 13

| /LPI/ | Low Power Idle   |   | Correcting /L11/, Preserving /L12/ |
|-------|------------------|---|------------------------------------|
| /L11/ | Low Power Idle 1 | 2 | /K28.5/D6.5/                       |
| /L12/ | Low Power Idle 2 | 2 | /K28.5/D26.4/                      |

## Use of KR Training Frame

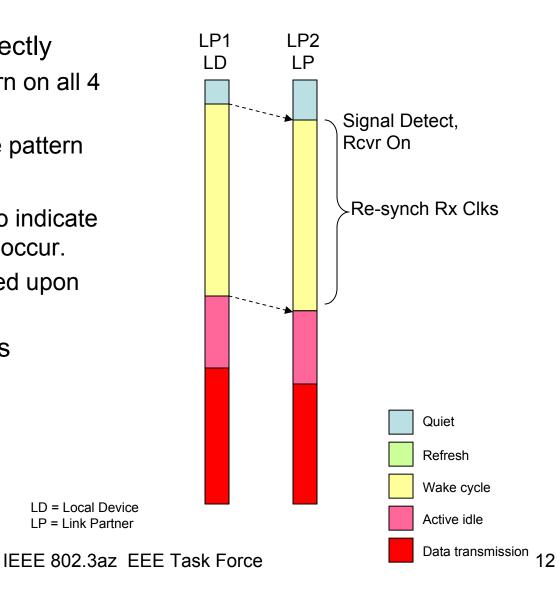
- Data header of 36 octets (=288 UI) which has low baud rate
  - Does not need phase lock to decode
- Training pattern of 512 octets (=4096 UI) at line rate
  - Enables clock recovery and receiver adaptation
- RX PHY detects the training pattern
  - Anticipates its boundary
  - Triggers the framing/FEC synchronization
- RX specifies min # of training frames that TX must send
  - The transmitter can send a final training frame (with a special flag)
  - Switch to active idle.


### **KR** Operation

- Training frame length is 4384 UI ≈ 0.5 microsecond
- Wakeup flow should include some time to wake up the receiver circuitry:
  - Initiator turns on TX (and possibly RX) circuits, and starts transmitting (t=0)
  - Training frames activate RX signal detector and indicate wakeup or refresh (TBD us)
  - Additional frames required by the target+initiator for Rcvr Clock Sync for TBD # of Training Frames (# \* 0.5us)
  - For local device sends training frame with "last training frame" flag TBD. (0.5 us)
  - Transition to active mode
- Total wakeup time should be in range of 5-10us
- Update w/o wakeup
  - Initiator need not turn on its RX
  - Target need not turn on its TX
  - Initiator sends a fixed number of frames (TBD)

\* Thanks to Adee Ran of Intel

#### **KR** Wake


- Enter Refresh Cycle first
  - First transmitted training frame activates LP Signal Detect wakes Rcvr
  - After Refresh period, transition to Wake
- Wake Cycle
  - Add Wake to cell 13 of status report field
  - Change to TX & RX Active after TBD number of frames
- Known transition boundary
  - Simplifies FEC & coding sync



July 2008

## KX4/KX Wake Cycle

- Enter Wake Cycle directly
  - KX4 uses idle pattern on all 4 lanes
  - KX uses normal idle pattern
- Ordered sets
  - KX4 could use RF to indicate when synch did not occur.
  - Otherwise, just based upon time
- No FEC complications
  - Yippee!



#### Asymmetric Operation

- The Backplane PHY will support Asymmetric operation
  - The Backplane PHY are all dual simplex.
  - The TX -> RX pair can go in and out of LPI independent from the other direction.
- Refresh
  - LP periodically enters refresh cycle

## Summary

- LPI can be applied to backplane Ethernet PHYs
  - Training mode for KR
  - Set idle patterns for other PHYs
- Asymmetric support
  - Use of ordered sets in 10G (KX4 and KR)
  - Use of special idle codes for 1G (KX)