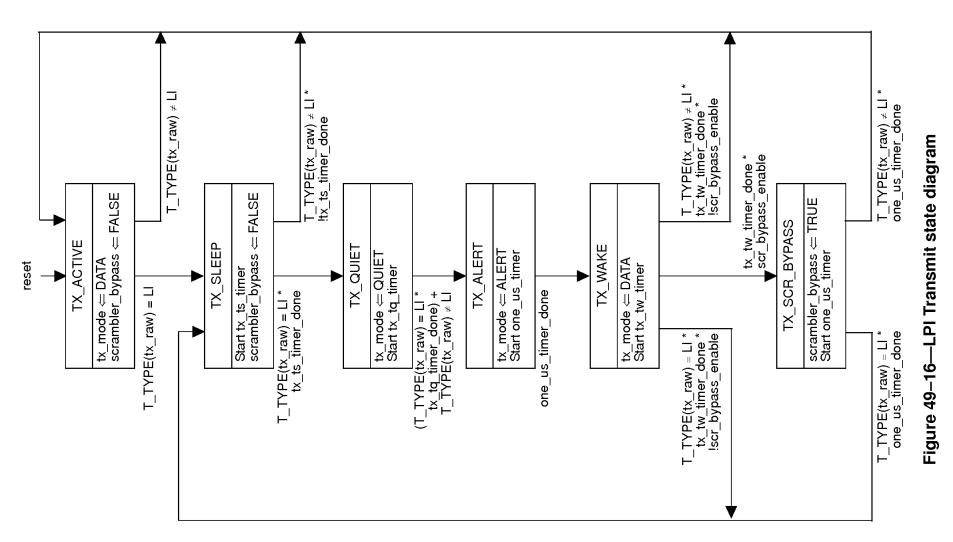


Timing parameters for Energy Efficient Ethernet Backplane

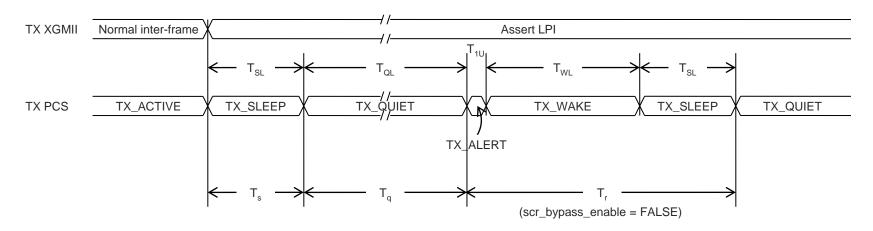
Adam Healey IEEE P802.3az Task Force Meeting Geneva, Switzerland May 2010

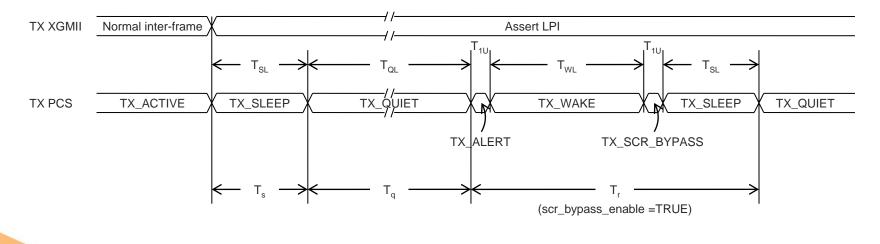
Comment #124: T_{WR} for 10GBASE-KR


- The values for T_{WR} in Table 49–3 are too large
 - They significantly exceed the minimum permissible value of $T_{w_sys_tx}$ per Table 78–4
 - Packet(s) transmitted immediately following the minimum deferral time, but before rx_tw_timer_done, will be lost and no wake error will be recorded to account for their absence
- The rationale for the current T_{WR} values may be found in comment #130 submitted against Draft 2.1
 - If the PHY wakes while in the TX_REFRESH state, scrambler bypass will be delayed
 - The receiver requires scrambler bypass to obtain block lock when the FEC sublayer is used
 - However, there was no need to increase T_{WR} when the FEC sublayer is not used

Comment #124: Suggested remedy

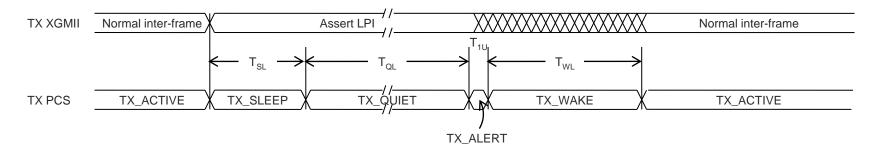
- Modify the LPI transmit state diagram
 - Define refresh to be TX_ALERT and TX_WAKE immediately followed by TX_SLEEP
 - If scr_bypass_enable = TRUE, unconditionally enter TX_SCR_BYPASS when rx_tw_timer_done
 - From TX_SCR_BYPASS, move to TX_SLEEP (refresh) or TX_ACTIVE (wake) when one_us_timer_done
- Greatly simplifies state diagram structure
- PHY power-up sequence is identical for refresh, wake, and wake from refresh
- T_{WR} can be set to a value that accurately accounts for wake errors



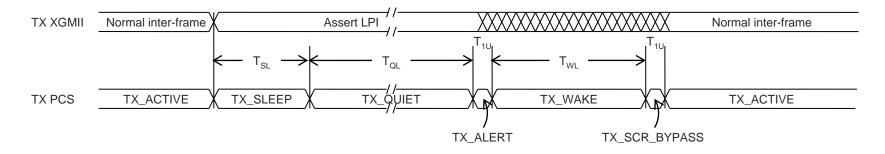

NOTE: Rotate your computer 90° for the optimal viewing experience

Timing diagram: SLEEP to REFRESH

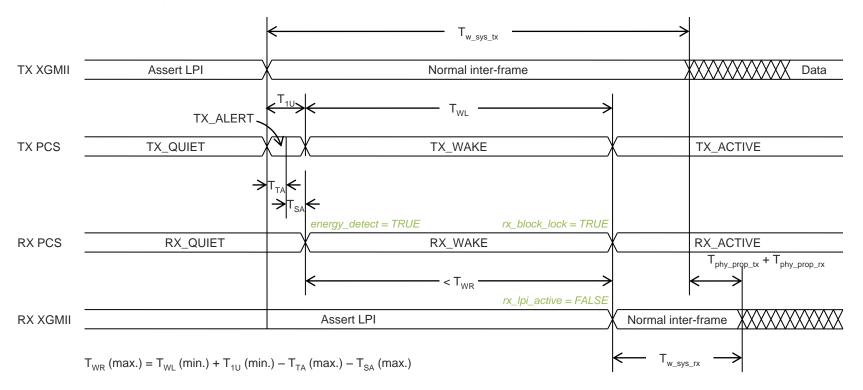
SLEEP to REFRESH (scr_bypass_enable = FALSE):



SLEEP to REFRESH (scr_bypass_enable = TRUE):

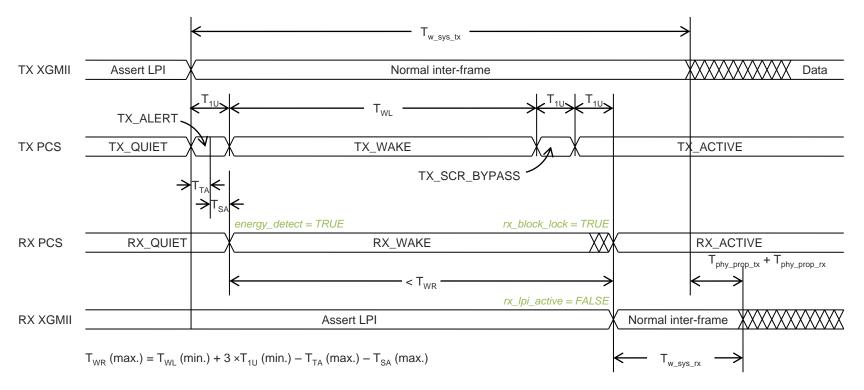


Timing diagram: WAKE from REFRESH



WAKE from REFRESH (scr_bypass_enable = TRUE):

Timing diagram: WAKE from QUIET, no FEC


WAKE from QUIET (scr_bypass_enable = FALSE):

7 LSI

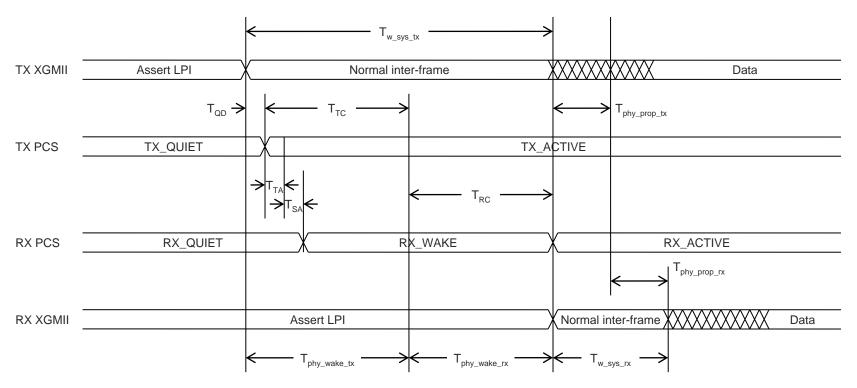
Timing diagram: WAKE from QUIET, with FEC

WAKE from QUIET (scr_bypass_enable = TRUE):

Timing parameters

- Comment #124: Update T_{WR} in Table 49–3
 - Proposed changes to the LPI state diagram also require modification of the T_r range in Table 78–2
- Timer tolerances
 - Comment #138: Table 78–2 implies a 10% tolerance but Table 48–9 and 49–2 define a 1% tolerance and Table 36–3a does not define a tolerance
 - Comment #121: one_us_timer has no defined tolerance
 - Comment #111 (R. Horner): Define one_us_timer to be exactly five FEC blocks
 - Comments #178 and #191(M. Brown): T_{SL} and T_{UL} tolerances are too tight
- Comments #134, 300, 302: Define the time the transmitter is allowed to achieve full compliance following wake

More nit-picking on timing


- Table 78–4 needs to be updated
 - Table 78–2 added a row for XGXS (XAUI) so shouldn't Table 78–4 add one as well (even though neither are PHYs as suggested by the table caption)
 - Re-order the rows in some logical fashion
 - $T_{phy_shrink_tx}$ and $T_{phy_shrink_rx}$ should be "max" values
- Suggested remedy
 - The following tables attempt to address all of these considerations

Reference timing diagram

WAKE from QUIET :

- As a matter of convention, transmitter wake time shrinkage will be referred to the point where the transmitter delivers a compliant signal ($T_{QD} + T_{TC}$)
- Assume T_{QD} (max) = $T_{phy_prop_tx}$ (min)

Proposal for Clause 36

Parameter	Description	Min	<u>Max</u>	Units
CT	Local Sleep Time from entering the TX_SLEEP state to when tx_quiet is set to TRUE	<u>19.9</u>	<u>20.1</u>	μs
T _{QL}	Local Quiet Time from when tx_quiet is set to TRUE to entry into the TX_REFRESH state	<u>2.5</u>	<u>2.6</u>	ms
T _{UL}	Local Refresh Time from <u>entry into the TX_REFRESH state to entry into the</u> TX_QUIET state	<u>19.9</u>	<u>20.1</u>	μs

Table 36-3a — Transmitter LPI timing parameters (proposed)

Table 36-3b — Receiver LPI timing parameters (proposed)

Parameter	Description	Min	Max	Units
T _{QR}	The time the receiver waits for <u>signal_detect to be set to OK</u> while in the RX_SLEEP and RX_QUIET states before asserting rx_fault	3	4	ms
T _{SR}	The maximum time allowed between entry into the RX_SLEEP state and signal_detect being set to FAIL.	22	24	μs
T _{WR}	Time the receiver waits in the RX_WAKE state before indicating a wake time <u>fault</u>		11	μs
T _{WTF}	Wake time fault recovery time		<u>1</u>	ms

Proposal for Clause 48

Parameter	Description	Min	<u>Max</u>	Units
T _{SL}	Local Sleep Time from entering the TX_SLEEP state to when tx_quiet is set to TRUE	<u>19.9</u>	<u>20.1</u>	μs
T _{QL}	Local Quiet Time from <u>when tx_quiet is set to TRUE to entry into the</u> TX_REFRESH state	<u>2.5</u>	<u>2.6</u>	ms
T _{UL}	Local Refresh Time from <u>entry into the TX_REFRESH state to entry into the</u> TX_QUIET state	<u>19.9</u>	<u>20.1</u>	μs

Table 48-9 — Transmitter LPI timing parameters (proposed)

Table 48-10 — Receiver LPI timing parameters (proposed)

Parameter	Description	Min	Max	Units
T _{QR}	The time the receiver waits for <u>signal_detect to be set to OK</u> while in the RX_SLEEP and RX_QUIET states before asserting rx_fault	3	4	ms
T _{WR}	Time the receiver waits in the RX_WAKE state before indicating a wake time <u>fault</u>		9	μs
T _{WTF}	Wake time fault recovery time		<u>1</u>	ms

Proposal for Clause 49

Parameter	Description	Min	<u>Max</u>	Units
T _{SL}	Local Sleep Time from entering the TX_SLEEP state to when tx_mode is set to QUIET	<u>4.9</u>	<u>5.1</u>	μs
T _{QL}	Local Quiet Time from when tx mode is set to QUIET to entry into the TX_ALERT state	<u>1.7</u>	<u>1.8</u>	ms
T _{WL}	Time spent in the TX_WAKE state	<u>10.9</u>	<u>11.1</u>	μs
<u>T₁₁₁</u>	Time spent in the TX_ALERT and TX_SCR_BYPASS states	<u>1.1</u>	<u>1.3</u>	<u>µs</u>

Table 49-2 — Transmitter LPI timing parameters (proposed)

Table 49-3 — Receiver LPI timing parameters (proposed)

Parameter	Description	Min	Max	Units
T _{QR}	The time the receiver waits for <u>energy_detect to be set to TRUE</u> while in the RX_SLEEP and RX_QUIET states before asserting rx_fault	2	3	ms
T _{WR}	Time the receiver waits in the RX_WAKE state before indicating a wake time fault (when scr_bypass_enable = FALSE)		<u>11.5</u>	μs
T _{WR}	Time the receiver waits in the RX_WAKE state before indicating a wake time fault (when scr_bypass_enable = TRUE)		<u>13.7</u>	μs
T _{WTF}	Wake time fault recovery time		<u>10</u>	ms
· <u> </u>	Hold-off timer starting when rx_mode is set to DATA. FEC cannot set			

Clause 74

5/26/2010 (v2)

T_{HO}

SIGNAL_OK to TRUE until this timer expires or the transition to

scrambler bypass = FALSE is detected.

 μs

13.7

Proposal for Clause 78 (insert rows in speed order)

Protocol	<i>T</i> _s μs		T_q µs		<i>T</i> _r μs	
Protocol	min	max	min	max	min	max
1000BASE-KX	<u>19.9</u>	<u>20.1</u>	<u>2,500</u>	<u>2,600</u>	<u>19.9</u>	<u>20.1</u>
XAUI	<u>19.9</u>	<u>20.1</u>	<u>2,500</u>	<u>2,600</u>	<u>19.9</u>	<u>20.1</u>
10GBASE-KX4	<u>19.9</u>	<u>20.1</u>	<u>2,500</u>	<u>2,600</u>	<u>19.9</u>	<u>20.1</u>
10GBASE-KR	<u>4.9</u>	<u>5.1</u>	<u>1,700</u>	<u>1,800</u>	<u>16.9</u>	<u>17.5</u>

Table 78-2 — Summary of the key EEE parameters for supported PHYs (proposed)

Table 78-4 — Summary of the LPI timing parameters for supported PHYs (proposed)

РНҮ Туре	Case	$T_{w_sys_tx}$ (min), in μ s	T_{w_phy} (min), in μ s	$T_{phy_shrink_tx}$ (max), in µs	T _{phy_shrink_rx} (<u>max</u>), in μs	$T_{w_sys_rx}$ (min), in μ s
1000BASE-KX		13.26	11.25	<u>5.0</u>	<u>6.5</u>	1.76
XGXS (XAUI)		<u>12.38</u>	<u>9.25</u>	<u>5.0</u>	<u>4.5</u>	<u>2.88</u>
10GBASE-KX4		12.38	9.25	<u>5.0</u>	<u>4.5</u>	2.88
10GBASE-KR	Case-1	15.38	12.25	<u>5.0</u>	<u>7.5</u>	2.88
IUUDASE-KK	Case-2	17.38	14.25	<u>5.0</u>	<u>9.5</u>	2.88

NOTE: Insert rows in speed order.

IEEE P802.3az Task Force