Active/Idle Toggling with OBASE-x for Energy Efficient Ethernet

November 2007 IEEE 802.3az Task Force

> Presenter: Robert Hays Intel Corporation

Contributors: Dave Chalupsky, Eric Mann, James Tsai, Aviad Wertheimer

Agenda

- GbE Controller Power & Energy Consumption
- Active/Idle Toggling with OBASE-x Proposal
- Average Power Curves
- State Transitions
- Implications to 802.3 Specifications
- PHY Considerations
- Recommendations

Power & Energy Glossary

- Operating Power (Watts) The rate at which electrical energy is delivered to a circuit or system
 - Peak Power (Watts) Maximum operating power of a system
 - Idle Power (Watts) Operating power of a system at rest
- Energy Consumption (Joules) Aggregate power consumed by a system over a period of time.
 - Energy Efficiency (Joules/bit) Energy required to complete a unit of work.
 E.g. energy required to transmit/receive each bit of data.
 - Average Power (Watts) Energy consumed divided by the period measured

GbE Controller Power Measurements

Test Information:

- Intel[®] 82573L Gigabit Ethernet controller, including:
 - 10/100/1000 PHY, MAC, buffers, PCI-Express x1 host interface
 - Typical client PC NIC device
 - .13µm fab process
- Idle = No traffic, 0 Mbps
- Active = Line-rate bi-directional traffic
- No Link = Cable removed (D0 state)

Source: Intel labs

Observations:

- 100M power is ~40% of 1000M power at 10% performance
- 100M & 1000M Idle power savings (vs. Active) is 17-35%
 - Savings come from PCIe LOs/L1 idle-state usage and turning off some circuits
- 10M Idle power savings is 60%
 - Additional savings from 10BASE-T idle signaling
- "No Link" is the lowest-power mode with the device still "on" (DO state)
 - Savings come from turning off all unessential digital & analog circuits

GbE Controller Energy Consumption

Source: Intel labs

Observations:

- 1000M transmission is 4x more energy efficient (J/bit) than 100M because it sends the same amount of data in 1/10th the time
- 1000M is 40x more energy efficient than 10M
- An "ideal" EEE solution would transmit data with minimal energy and return to low-power idle between packet bursts
 - An Idle state would need to be defined by 802.3 for higher-speed PHYs

* <u>Note:</u> Bidirectional traffic. 10MB transferred in each direction.

Proposed "OBASE-x" Idle

- OBASE-x is a "quiet" line idle that consumes minimum power
 - '0' = zero data rate, 'x' = Variable for any supported PHY type
- OBASE-x idle power expectations for a GbE device:
 - "No Link" \leq 0BASE-x \leq 10BASE-T Idle (e.g. 53mW \leq 0BASE-x \leq 194mW)
 - Est. it to be closer to "No Link"
- OBASE-x could take form of:
 - A newly defined idle signal or...
 - Reduced-voltage 10BASE-T idle
- OBASE-x variations are likely
 - Support for varying PHY types with unique timing requirements
 - Possibly multiple sleep levels with differing resume latencies

Source: Intel labs

Active/Idle Toggling with OBASE-x Concept

- Principle: Transmit data at fastest rate then return to idle
 - Energy savings come from power cycling between active/idle states
- Active/Idle toggling could be used *instead* of PHY rate shifting
 - Offers the best energy efficiency on links with lower utilization
 - Integrates well with existing PC power management schemes (e.g. ACPI)
 - Clock & power gating (on/off) is easier than rate shifting
- Asymmetrical operation would provide even better energy efficiency
 - Each direction could enter active & idle states independently
 - Most end-node traffic is heavily weighted toward either send or receive
 - Tx & Rx data paths already operate independently above the PHY

Behavioral Comparison

Conceptual Average Power vs. BW Utilization

- Fast-Start offers course-grain power regulation via 10x PHY choices
- Subset-PHY allows finer-grain power steps utilizing new PHY modes
- Active/Idle Toggling with OBASE-x allows smooth power averaging and lowest energy consumption on underutilized connections

Average Power vs. BW Utilization Simulation

Input Assumptions:

- •Traffic Input = Trace_VOIP_*.txt
- 1000Mbps Active Power = 1217mW
 Idle Power = 65mW
- Active (Resume) Delay = 10us
- Idle (Sleep) Wait Period = 10us
- Idle (Sleep) Delay = 1us

Comparison to Existing GbE Controller Power

<u>Key (Active / Idle Power Assumptions):</u> Active/Idle Toggling Simulation (1217mW / 65mW) 1000BASE-T Measurements (1217mW / 1010mW) 100BASE-TX Measurements (483mW / 314mW) 10BASE-T Measurements (504mW / 194mW)

Simulation Model Contribution

- Intel will contribute the 'Average Power vs. Bandwidth Utilization' simulation model to the IEEE 802.3az Task Force
- The "C" program source code and sample traffic pattern trace files will be posted on the EEE Tools web page:
 - <u>http://grouper.ieee.org/groups/802/3/az/public/tools/index.html</u>

Active/Idle State Transitions

Transition	Description	Transition Initiator
Tx_Active	Transmit data path resumes to Active when the system wants to send data	System Policy Manager (e.g. LAN Driver)
Tx_ldle	Transmit data path goes to Idle when there is no data to send	System Policy Manager (e.g. LAN Driver)
Rx_Active	Receive data path resumes to Active when link partner wants to send data	Link Partner
Rx_ldle	Receive data path goes to Idle when link partner has completed sending data	Link Partner

Computer Networking System Block Diagram

14

Tx_Active Transition

Tx_Idle Transition

Rx_Active Transition

<u>Key:</u> Vendor Dependent 802.3az Specified

Rx_Idle Transition

<u>Key:</u> Vendor Dependent 802.3az Specified

Implications to IEEE 802.3 Specifications

<u>Vendor dependent (unspecified):</u> •Tx state transition control & policy •System interface & data movement

802.3 specifications:

- •OBASE-x signaling for each PHY type
- Active/idle transition signals
- Transition timing requirements
- MAC/PHY interface control
- Control/status registers for active & idle states
- Auto-negotiation capability registers
- Clause 30 MIB implications
- Error detection & recovery

OBASE-x PHY Considerations*

- 1. Idle power consumption
 - How low can Idle get for each PHY type?
- 2. Transition delays
 - How quickly can the PHY resume active operation?
- 3. Timing recovery
 - How to maintain link status and clock sync?
- 4. Asymmetric operation
 - How to support transmission one way while the other is idle?
- 5. Implementation cost & complexity
 - How would OBASE-x compare to Fast-Start or Subset-PHY?

*<u>Note:</u> These considerations are addressed in zimmerman_01_1107.pdf

Recommendations to 802.3az Task Force

- Define a OBASE-x Idle state for each supported PHY type in the IEEE 802.3az Objectives
- Consider Active/Idle Toggling with OBASE-x as an alternative to PHY Rate Shifting for Energy Efficient Ethernet

