Active/Idle Toggling with OBASE-x for Energy Efficient Ethernet

November 2007
IEEE 802.3az Task Force

Presenter: Robert Hays
Intel Corporation

Contributors: Dave Chalupsky, Eric Mann, James Tsai, Aviad Wertheimer
Agenda

- GbE Controller Power & Energy Consumption
- Active/Idle Toggling with 0BASE-x Proposal
- Average Power Curves
- State Transitions
- Implications to 802.3 Specifications
- PHY Considerations
- Recommendations
Power & Energy Glossary

- **Operating Power** - (Watts) The rate at which electrical energy is delivered to a circuit or system
 - Peak Power - (Watts) Maximum operating power of a system
 - Idle Power - (Watts) Operating power of a system at rest

- **Energy Consumption** - (Joules) Aggregate power consumed by a system over a period of time.
 - Energy Efficiency - (Joules/bit) Energy required to complete a unit of work. E.g. energy required to transmit/receive each bit of data.
 - Average Power - (Watts) Energy consumed divided by the period measured

\[
Average \ Power \ = \ \frac{\text{Energy Consumption}}{(t_1 - t_0)}
\]

\[
\text{Energy Consumption} \ = \ \int_{t_0}^{t_1} \text{power}(t) \ dt
\]
Observations:

- 100M power is \(\approx 40\% \) of 1000M power at 10% performance
- 100M & 1000M Idle power savings (vs. Active) is 17-35%
 - Savings come from PCIe L0s/L1 idle-state usage and turning off some circuits
- 10M Idle power savings is 60%
 - Additional savings from 10BASE-T idle signaling
- “No Link” is the lowest-power mode with the device still “on” (D0 state)
 - Savings come from turning off all unessential digital & analog circuits

Test Information:

- Intel® 82573L Gigabit Ethernet controller, including:
 - 10/100/1000 PHY, MAC, buffers, PCIe-Express x1 host interface
 - Typical client PC NIC device
 - .13µm fab process
- Idle = No traffic, 0 Mbps
- Active = Line-rate bi-directional traffic
- No Link = Cable removed (D0 state)
GbE Controller Energy Consumption

Observations:

- 1000M transmission is 4x more energy efficient (J/bit) than 100M because it sends the same amount of data in 1/10th the time
- 1000M is 40x more energy efficient than 10M
- An “ideal” EEE solution would transmit data with minimal energy and return to low-power idle between packet bursts
 - An Idle state would need to be defined by 802.3 for higher-speed PHYs

* Note: Bidirectional traffic. 10MB transferred in each direction.
Proposed “0BASE-x” Idle

- 0BASE-x is a “quiet” line idle that consumes minimum power
 - ‘0’ = zero data rate, ‘x’ = Variable for any supported PHY type

- 0BASE-x idle power expectations for a GbE device:
 - “No Link” ≤ 0BASE-x ≤ 10BASE-T Idle (e.g. 53mW ≤ 0BASE-x ≤ 194mW)
 - Est. it to be closer to “No Link”

- 0BASE-x could take form of:
 - A newly defined idle signal or...
 - Reduced-voltage 10BASE-T idle

- 0BASE-x variations are likely
 - Support for varying PHY types with unique timing requirements
 - Possibly multiple sleep levels with differing resume latencies

Source: Intel labs
Active/Idle Toggling with OBASE-x Concept

- **Principle:** Transmit data at fastest rate then return to idle
 - Energy savings come from power cycling between active/idle states

- **Active/Idle toggling could be used *instead* of PHY rate shifting**
 - Offers the best energy efficiency on links with lower utilization
 - Integrates well with existing PC power management schemes (e.g. ACPI)
 - Clock & power gating (on/off) is easier than rate shifting

- **Asymmetrical operation would provide even better energy efficiency**
 - Each direction could enter active & idle states independently
 - Most end-node traffic is heavily weighted toward either send or receive
 - Tx & Rx data paths already operate independently above the PHY
Behavioral Comparison

Typical NIC Today (On or Off):

On (GbE)
Off (No Link)

GbE 100Mb

PHY Rate Shifting:

Down-Shift Delay
Up-Shift Delay

Active/Idle Toggling with 0BASE-x:

GbE Active
0BASE-x Idle

Idle Interval
Active Idle Delay Delay

Lower Energy Consumption
Fast-Start offers course-grain power regulation via 10x PHY choices

Subset-PHY allows finer-grain power steps utilizing new PHY modes

Active/Idle Toggling with 0BASE-x allows smooth power averaging and lowest energy consumption on underutilized connections
Input Assumptions:
- Traffic Input = Trace_VOIP_*.txt
- 1000Mbps Active Power = 1217mW
- Idle Power = 65mW
- Active (Resume) Delay = 10us
- Idle (Sleep) Wait Period = 10us
- Idle (Sleep) Delay = 1us

Source: Intel labs
Comparison to Existing GbE Controller Power

Key (Active / Idle Power Assumptions):
Active/Idle Toggling Simulation (1217mW / 65mW)
1000BASE-T Measurements (1217mW / 1010mW)
100BASE-TX Measurements (483mW / 314mW)
10BASE-T Measurements (504mW / 194mW)

Source: Intel labs
Simulation Model Contribution

- Intel will contribute the ‘Average Power vs. Bandwidth Utilization’ simulation model to the IEEE 802.3az Task Force.
- The “C” program source code and sample traffic pattern trace files will be posted on the EEE Tools web page:
Active/Idle State Transitions

<table>
<thead>
<tr>
<th>Transition</th>
<th>Description</th>
<th>Transition Initiator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx_Active</td>
<td>Transmit data path resumes to Active when the system wants to send data</td>
<td>System Policy Manager (e.g. LAN Driver)</td>
</tr>
<tr>
<td>Tx_Idle</td>
<td>Transmit data path goes to Idle when there is no data to send</td>
<td>System Policy Manager (e.g. LAN Driver)</td>
</tr>
<tr>
<td>Rx_Active</td>
<td>Receive data path resumes to Active when link partner wants to send data</td>
<td>Link Partner</td>
</tr>
<tr>
<td>Rx_Idle</td>
<td>Receive data path goes to Idle when link partner has completed sending data</td>
<td>Link Partner</td>
</tr>
</tbody>
</table>

Transition Initiator:
- **System Policy Manager** (e.g. LAN Driver)
- **Link Partner**
1. LAN Driver manages Tx toggling policy. Example: It monitors I/O Memory Buffer for data to reach a fill threshold, then initiates Tx_Active

2. LAN Driver tells Controller when to enter Tx_Active

3. Controller enters Tx_Active and begins buffering data

4. Controller tells PHY to resume Tx_Active and then sends data to PHY

5. Local PHY enters Tx_Active

6. Local PHY sends its link partner a “start-transmit” frame and begins transmitting data after a specified delay

Key:
Vendor Dependent
802.3az Specified
1. LAN Driver manages the Tx toggling policy. Example: It monitors I/O Memory Buffer for it to empty, then initiates Tx_Idle

2. LAN Driver tells Controller when to enter Tx_Idle

3. Controller tells PHY to enter Tx_Idle

4. Controller enters Tx_Idle

5. Local PHY stops transmitting and enters Tx_Idle

Key:
- Vendor Dependent
- 802.3az Specified
Rx_Active Transition

1. Local PHY receives “start-transmit” frame from its link partner
2. PHY tells controller to enter Rx_Active
3. PHY enters Rx_Active and begins receiving data
4. Controller enters Rx_Active and receives data
5. Controller places data into I/O Memory Buffer

Key:
Vendor Dependent
802.3az Specified
Rx_Idle Transition

1. Local PHY detects Idle signal and enters Rx_Idle
2. PHY tells controller to enter Rx_Idle
3. Controller enters Rx_Idle

Key:
- **Vendor Dependent**
- **802.3az Specified**
Implications to IEEE 802.3 Specifications

Vendor dependent (unspecified):
- Tx state transition control & policy
- System interface & data movement

802.3 specifications:
- 0BASE-x signaling for each PHY type
- Active/idle transition signals
- Transition timing requirements
- MAC/PHY interface control
- Control/status registers for active & idle states
- Auto-negotiation capability registers
- Clause 30 MIB implications
- Error detection & recovery
0BASE-x PHY Considerations*

1. Idle power consumption
 - How low can Idle get for each PHY type?

2. Transition delays
 - How quickly can the PHY resume active operation?

3. Timing recovery
 - How to maintain link status and clock sync?

4. Asymmetric operation
 - How to support transmission one way while the other is idle?

5. Implementation cost & complexity
 - How would 0BASE-x compare to Fast-Start or Subset-PHY?

*Note: These considerations are addressed in zimmerman_01_1107.pdf
Recommendations to 802.3az Task Force

- Define a 0BASE-x Idle state for each supported PHY type in the IEEE 802.3az Objectives

- Consider Active/Idle Toggling with 0BASE-x as an alternative to PHY Rate Shifting for Energy Efficient Ethernet