

Deep Sleep Idle Concept for PHYs

George Zimmerman Solarflare Communications

Introduction

- Sleep Idle Overview
- Transition times
- Deep Sleep Idle concept
- 10GBASE-T Deep Sleep Idle
- Power& Startup time estimates

Deep Sleep Idle Overview

Return to old-fashioned ethernet

- Transmit when data is there to send
- Quiescient when it's not
- Maximize energy efficiency
 - Energy per bit will be lowest at the highest speed
 - May not be true comparing 1st generation of the new speed, but becomes true rapidly
 - Also true for optical
- Problem: how to transition rapidly

Transition Times

EEE Study group focused on 1 msec transition times

- Improving startup and bypassing autoneg would be sufficient for this timescale
- Suffer sizes and application latencies will suffer
- Chipset and Computer architecture power management focus on microsecond times
 Ultimately, PHY latency and propagation time limit transition times

Transition Times (2)

Deep Sleep Idle transition time will be limited by startup/"sync" time

Best techniques will maintain PCS and PMA synchronization

Enable blind return to high rate

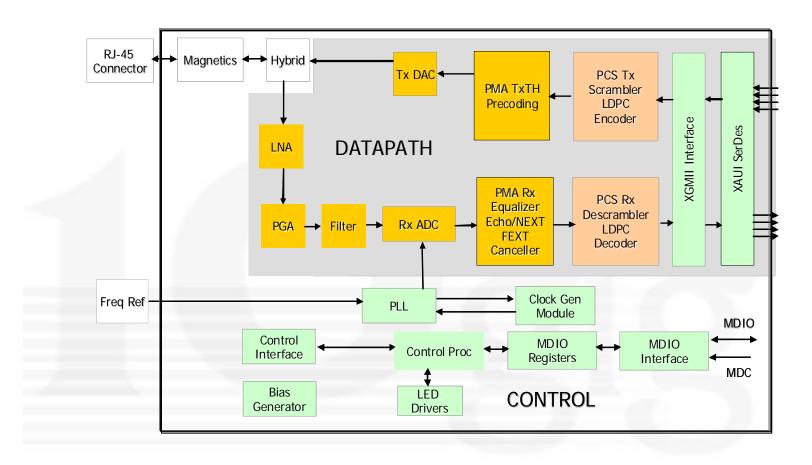
Limited only by block sizes, latency and prop delay

Each PHY rate (100BASE-TX, 1000BASE-T, 10GBASE-T) uses its own PCS & PMA

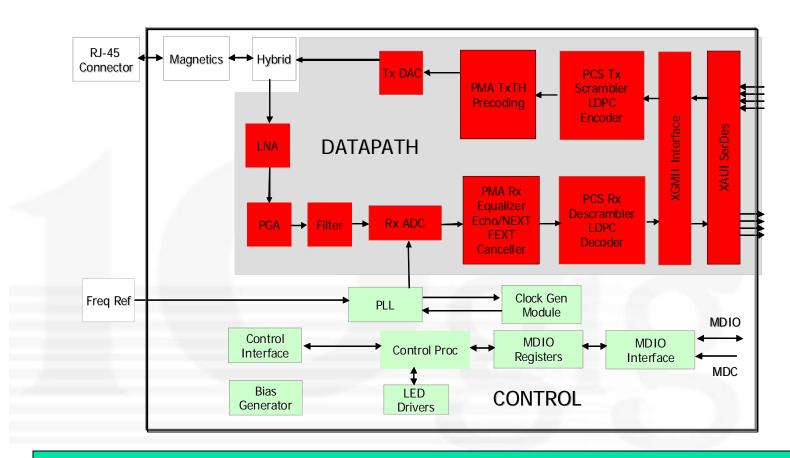
-> each has its own best deep sleep idle state!

Deep Sleep Idle Concept

- Add a counting state machine for deep sleep idle modes to wake up periodically
 - Turn off receivers, transmitters for N frames
 - Turn on receiver (or transmitter) on schedule for 1 (or M) frames
 - Check for "wake-up" codeword
 - Continue activity transitioning back to active mode or go back to "counting sleep" depending on codeword received
- Minimizes Standards work, minimizes power, minimizes return time
 - Maintains PMA & PCS structures
 - Vendor-dependent hardware scheduling
 - Standards Work is focused on negotiation, state transitions and parameters of the deep sleep idle state


10GBASE-T Deep Sleep Idle

- Set framing interval makes it easy to signal a reduced frame speed
 - Receiver can flywheel between "off" frames without burning signal processing or decoding power
 - Near and far-end frames can be staggered for additional savings when frames are received
- Return to high speed can be signalled and continued within a single frame
- Other rate PHYs can be structured similarly using periodic IDLE symbols and their PCSs



10GBASE-T Transceiver - On state

10GBASE-T Transceiver – Deep Sleep Idle state

RED BLOCKS ARE POWERED DOWN OR HAVE CLOCKS GATED BETWEEN PULSED FRAMES

Power Estimates

- >> Off_frame power: P_off = P_clkgen+P_ctl+P_ovr
 - P_ovr: vendor-specific overhead for leakage & housekeeping (e.g., MDIO) needed in ANY low-power state
 - Current designs conservative estimate: 15% of total power
 - Leakage as normal and overhead circuitry is kept at full activity
 - 👒 Can be reduced
 - Higher than assumptions in diab_2_0907
- Deep_Sleep_Idle_frame power: P_on= P_nominal P_LDPC-P_ENX
 - Current designs estimate: 65% nominal power
 Consistent with overhead+50% analog assumption of diab_2_0907
- 1:N frame decimation gives:
 - P_deep_sleep_idle: [(N-1)*P_off + (P_on)] / N
- 1:10 frame decimation, (equiv 1G traffic load)

P= [9*.15+.65] /10 = 20% of nominal 10G PHY power level

6 November 2007: Energy Efficient Ethernet

G. Zimmerman

Recovery Time

- Bringup time = T_interface sync + T_latency + T_next_frame (+T_ack ?)
 - T_latency (10GBASE-T) = 2.5usec
 - Interface: XAUI: T_bringup = XX usec
 - Time to next frame: T_next_frame can be negotiated
 - Longer times allow deeper power down (leakage & overhead savings)
 - Shorter times allow faster transition, less savings
 - Search Examples:
 - ≈ 1:10 T_next_active_frame= 3.2usec, 20% nom pwr
 - № 1:1000 T_next_active_frame = 320usec, 8% nom pwr
 - Solution Service Servi
- Require Acknowledge of speed transitions?
 - Solution States Sta
 - Costs time (Latency + processing delay), increases required buffers to account for missed Acks and increases error states

ENABLES < 10 usec transitions</p>

Open issues & advantages

Negotiation of recovery time (duty cycle)

Carrying data in "deep_sleep_idle" frames

Costs some power, and can be negotiated, complicates MAC/PHY relationship

May force negotiation of M "on frames" per N "off frames" (right now M=1)

Deep Sleep Idle Considerations

- Deep Sleep Idle power consumption
 - Can be limited purely by the leakage and overhead management
 - Should always be better than going to the next lower rate or subset
- Transition delays adjustable, down to microseconds
- Timing recovery -Inherently retains timing lock and frame sync
- Asymmetric operation possible
 - But more complicated to operate while other direction is deep sleep idle
- Implementation cost & complexity
 - Similar to fast-start, deep sleep idle adds only minimal control sequencing circuitry and doesn't change the signal processing or datapath PCS circuitry of the PHY

Conclusions

Deep Sleep Idles can be structured by periodic transmission of blocks of data Can use inherent framing in PCS of 10GBASE-T Uses existing PCS and PMA with minimal "flywheel" logic 10usec-scale recovery times are achievable Achieves adjustable efficiency better than 10X improvement for the PHY Much better for the entire system