

Supporting material related to comments against Clause 40

Adam Healey, Niall Fitzgerald, Jacobo Riesco, Brian Murray LSI Corporation

IEEE P802.3az Task Force Meeting Dallas, TX November 2008

Topics

- 1000BASE-T wake time negotiation
- 1000BASE-T signal_detect definition
- 1000BASE-T PHY Control state diagram

Wake time negotiation

- In Draft 1.0, each PHY advertises the fastest supported wake time and the larger of the two values is used
- Allows robust operation since wake time can be set as a result of field trials and an acceptable rate of failure to wake
 - There will always be some (low) probability of either not waking or getting a symbol error just after wake
 - This probability diminishes with longer wake times
- Also allows wake time to be improved in successive PHY generations
- However, striving for faster wake must result in a trade-off with energy savings
 - The primary aim of Energy Efficient Ethernet is energy savings

Problem statement

- The disadvantage of the current mechanism is that the slowest wake time will always be chosen
 - Applications that requires lower latency are at the mercy of the wake time advertised by the link partner regardless of the fastest wake time that the link partner actually supports
- Also, there is no means to support a wake time that is <u>fast enough</u> but with the <u>greatest energy savings</u>
 - For example, if the system intends to negotiate a 300 microsecond wake time, there is no need to constrain the PHY to a 16 microsecond wake
- Some applications will require greatest energy savings while others require the lowest possible latency

Wake time negotiation proposal

- Define two energy modes: lowest energy and faster wake
- Add a bit to advertise the preferred energy mode
 - 0 = Prefer lowest energy
 - 1 = Prefer faster wake
- If both PHYs prefer lowest energy, resolve to lowest energy and use the lowest energy mode wake time (propose 24 microseconds)
- If either PHY prefers faster wake, resolve to faster wake and use the negotiated wake up time per the current draft

Lowest energy	Faster wake
Greatest energy savings	 Reduced energy savings
 Slowest PHY wake time, 24 μs 	• Faster PHY wake time, \leq 16 μ s
 Used when the system wake is large, e.g. 300 μs 	 Used when the system wake is smaller, e.g. 16 μs
 Used by applications requiring the greatest energy savings 	 Used by applications requiring lower latency

Topics

- 1000BASE-T wake time negotiation
- 1000BASE-T signal_detect definition
- 1000BASE-T PHY Control state diagram

signal_detect - 1

- signal_detect = FALSE must be detected while the local transmitter is transmitting and hence is intended to be a DSP function
 - This distinction could be made by redefining the condition as zero_detect = TRUE
 - The zero_detect = TRUE assertion time is the receive path latency (T_{rp}) plus the processing time to detect and incoming stream of zeros (T_{zd})
 - Propose that maximum assertion time, T_{sd} , is 0.5 microseconds
 - Care should be taken in the WAIT_QUIET states to ensure that rem_lpi_req is not incorrectly decoded to FALSE prior to zero_detect being set to TRUE (also applies to the proposed POST_UPDATE state)

signal_detect - 2

- signal_detect = TRUE is intended to be an analog function and is only used in the QUIET state
 - The maximum signal_detect = TRUE assertion time, T_{sa} , is suggested to be 0.5 microseconds
- There is one exception...
 - When entering QUIET from the proposed POST_UPDATE state, it may be necessary to wait some time before enabling the analog detector to prevent reflections from triggering it
 - During that time, the DSP function should be used instead (zero_detect = FALSE)
- A new timer, lpi_mask_timer, has been introduced to explicitly enforce this behavior in the QUIET state.
 - Shall also be used to keep transmission enabled while not done (as in WAIT_QUIET) to ensure that if loc_lpi_req is set to FALSE, it can be transmitted in the WAKE state
 - The lpi_mask_timer is suggested to be 2 microseconds (TBC)

Wake-up signal

- The wake-up signal is transmitted during the WAKE state to initiate a refresh or a transition out of low power mode
- This signal may be transmitted while the PHY analog front-end is still powering up, and is not guaranteed (or intended) to be a compliant IDLE signal
- Its only purpose is to cause the link partner to assert signal_detect = TRUE
- It is proposed that this signal should be between 50 to 75% (TBD) of the IDLE levels with the same (+2, 0, −2) symbols ratio as an IDLE signal (with 10% margin)
- After entry into the WAKE state, these requirements must be satisfied within the minimum lpi_waketx_timer less the maximum signal_detect assertion time

Topics

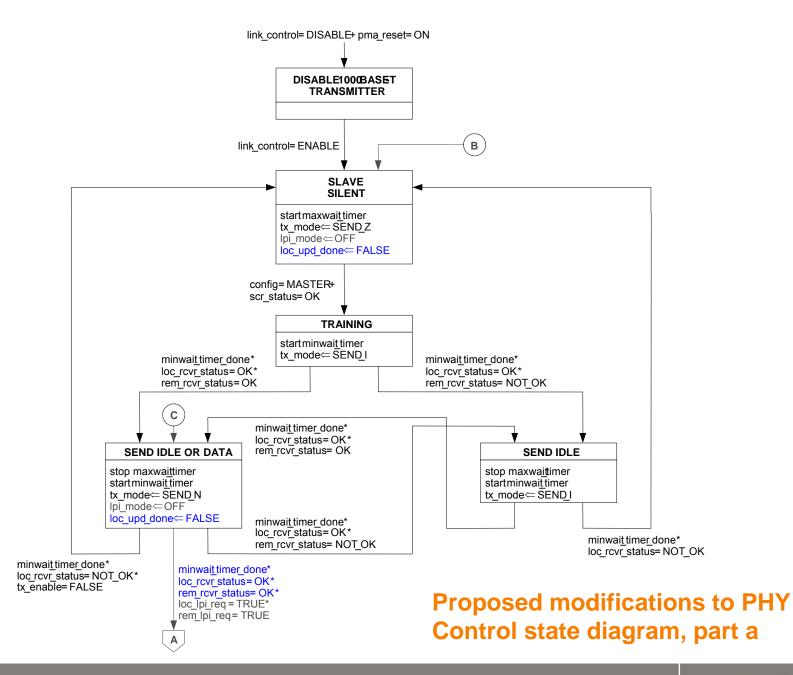
- 1000BASE-T wake time negotiation
- 1000BASE-T signal_detect definition
- 1000BASE-T PHY Control state diagram

Problem statement

- There is some interest in enforcing that a minimum time is spent in the WAKE_SILENT state to ensure predictable transitions during wake
- A proposal is presented to address this concern while guaranteeing a minimum period of uninterrupted transmission following entry into the UPDATE state to allow adaptive filter coefficient update
 - This is guaranteed in the current PHY Control state diagram

Summary of the proposal

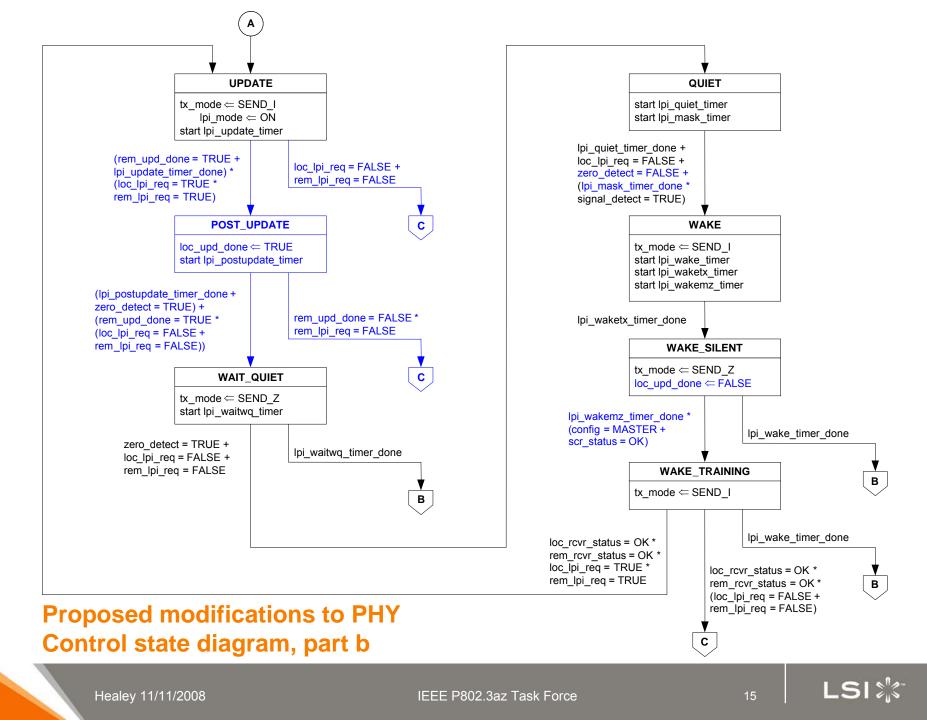
- Force the PHY to remain in the WAKE_SILENT state for a duration of at least lpi_wakemz_timer
- Introduce new POST_UPDATE state, succeeding UPDATE state, to control transitioning into WAIT_QUIET or SEND IDLE OR DATA
- Introduce new variable loc_upd_done
 - Indicates that update of local adaptive filter coefficients has completed
 - Assigned a value of FALSE in the UPDATE state and a value of TRUE in the POST_UPDATE state
 - Communicated to the link partner and received as rem_upd_done
 - Various encodings of loc_upd_done are possible
- The transition from WAKE_TRAINING to WAKE_SILENT is no longer required and has been removed
- The lpi_waitwt_timer is no longer required (it was added to combat the fall-through case) and has been removed.


LSI

PCS encoding of loc_upd_done

• 40.3.1.3.4 Generation of bits Sd_n[8:0]

The bit $Sd_n[1]$ is used to scramble the GMII data bit $TXD_n[1]$ during data mode and to encode loc_upd_done or cext_err_n otherwise. The proposed definition is as follows:

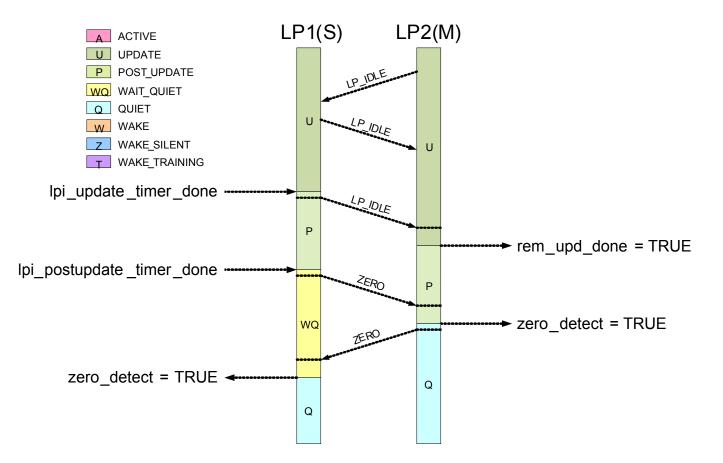

$$Sd_{n}[1] = -\begin{bmatrix}Sc_{n}[1] \land TXD_{n}[1], & if (tx_enable_{n-2} = 1)\\Sc_{n}[1] \land 1, & else if ((loc_upd_done = TRUE) and (tx_mode \neq SEND_Z))\\Sc_{n}[1] \land cext_err_{n}, & else\end{bmatrix}$$

LSI 🖾

Healey 11/11/2008

IEEE P802.3az Task Force

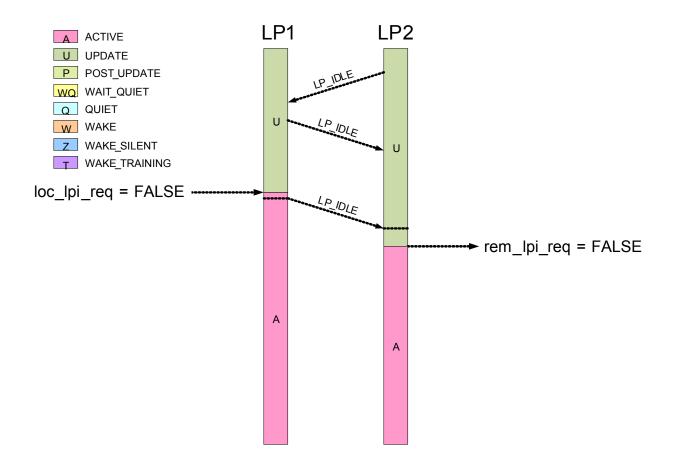
Highlights


- A direct transition is provided from UPDATE (or POST_UPDATE) to SEND IDLE OR DATA if the link partner has not yet completed filter coefficient updates (e.g. rem_upd_done = FALSE)
 - Update of adaptive filter coefficients may continue uninterrupted
- When the remote PHY has signaled completion of update then the transition through to the wake sequence is possible
- Duration of lpi_postupdate_timer is required to be greater than one round-trip delay

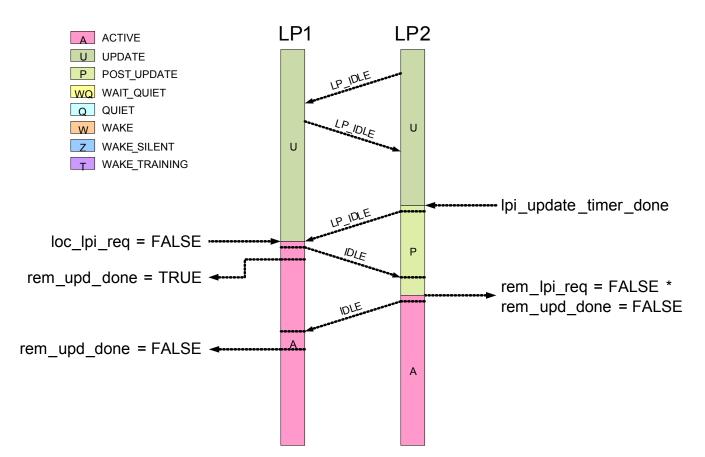
– Propose a range of 2.0 and 2.2 microseconds

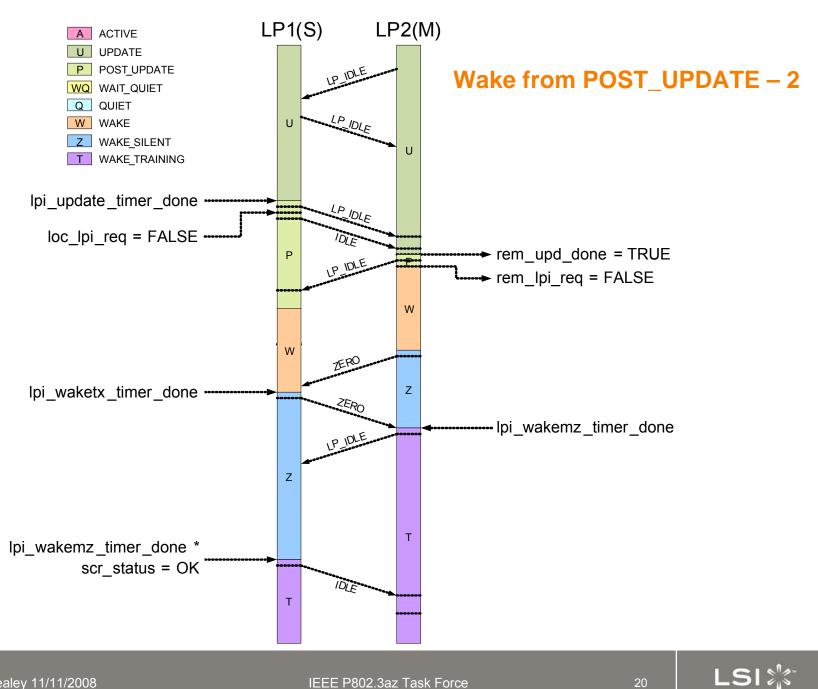
- If loc_lpi_req = FALSE during POST_UPDATE, then the local device must wait for rem_upd_done = TRUE before proceeding to WAKE
 - This will not add time to the overall wake time budget
- New signal_detect terminology and lpi_mask_timer included per the preceding definition

Timing diagram: Enter QUIET


Healey 11/11/2008

IEEE P802.3az Task Force

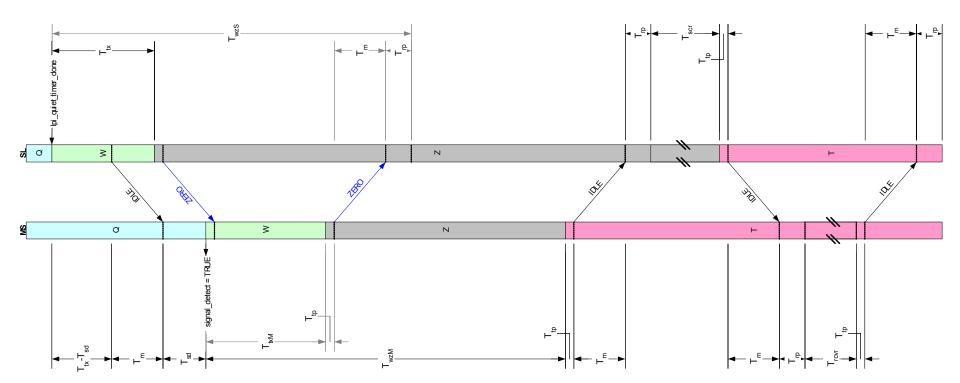

7


LSI

Timing diagram: Wake from UPDATE

Timing diagram: Wake from POST_UDPATE – 1

IEEE P802.3az Task Force

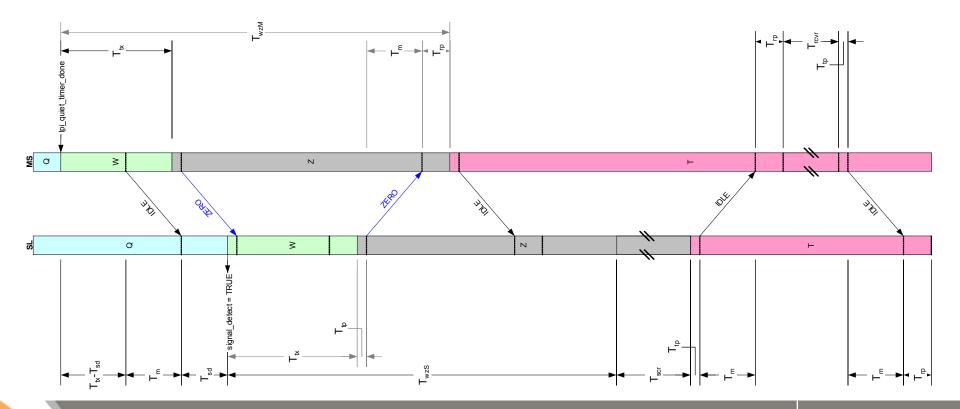

Change to Ipi_wakemz_timer

 The value of lpi_wakemz_timer needs to be increased to avoid new corner cases introduced the enforcement of the WAKE_SILENT state during the wake process

Timing analysis: Slave wakes up first

Legend

- T_{to} PHY transmit latency
- T_m Cabel propagation delay
- T_{rp} PHY receive latency
- T_{sd} Signal detect assertion time
- T_{tx} lpi_waketx_timer (wake transmit duration)
- T_{wz} lpi_wakemz_timer (wakeup stabilization time)
- T_{scr} Scrambler acquisition time
- T_{rcvr} Receiver acquisition time


22

LSI

Timing analysis: Master wakes up first

Legend

- T_{tp} PHY transmit latency
- T_m Cabel propagation delay
- T_{rp} PHY receive latency
- T_{sd} Signal detect assertion time
- T_{tx} Ipi_waketx_timer (wake transmit duration)
- T_{wz} lpi_wakemz_timer (wakeup stabilization time)
- T_{scr} Scrambler acquisition time
- T_{rcvr} Receiver acquisition time

LS

Timing equations

lpi_wakemz_timer

$$T_{wz} \ge T_{tx} - T_{sd} + T_m + T_{sd} + T_{tx} + T_{tp} + T_m + T_{rp} = T_p + T_m + 2 \cdot T_{tx}^{\max}$$
(where $T_p = T_{tp} + T_m + T_{rp}$)

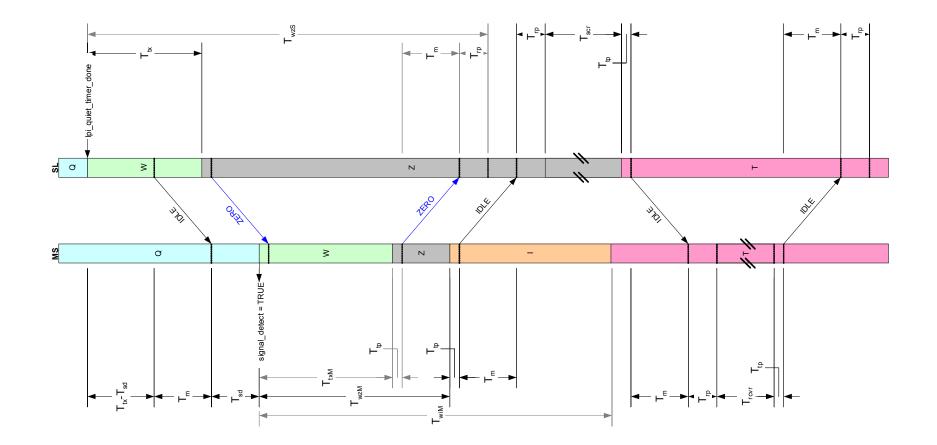
Slave wake-up time

$$T_{w}^{s} = T_{tx}^{s} - T_{sd}^{m} + T_{m} + T_{sd}^{m} + T_{wz}^{m} + T_{p} + T_{scr} + T_{p} + T_{rcvr} + T_{p} = T_{tx}^{s} + T_{m} + T_{wz}^{m} + T_{p} + T_{scr} + T_{p} + T_{rcvr} + T_{p}$$

Master wake-up time

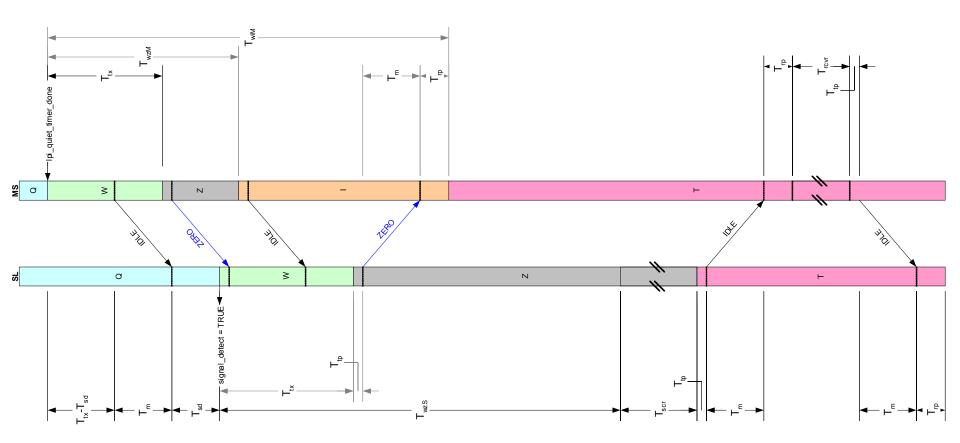
$$T_{w}^{m} = T_{tx}^{m} - T_{sd}^{s} + T_{m} + T_{sd}^{s} + T_{wz}^{s} + T_{scr} + T_{p} + T_{rcvr} + T_{p} = T_{tx}^{m} + T_{m} + T_{wz}^{s} + T_{scr} + T_{p} + T_{rcvr} + T_{p}$$

IEEE P802.3az Task Force



Timing analysis observations

- Assuming master and slave timing parameters are equal, the slave wake-up time is larger (one propagation delay, T_p)
- The slave wake-up time is limited by the master lpi_wakemz_timer
- If that is reduced, the wake-up time could be also reduced


25

Asymmetric lpi_wakemz_timer: Slave wakes up first

IEEE P802.3az Task Force

Asymmetric lpi_wakemz_timer: Master wakes up first

IEEE P802.3az Task Force

LSI 🐩

Asymmetric lpi_wakemz_timer conclusions

- MASTER lpi_wakemz_timer could be made smaller than the SLAVE
 - Maximum value shown below is 2 microseconds
- "I" state signifies the time the MASTER must just send IDLE symbols to allow the SLAVE to acquire scrambler lock
 - $-T_{wi}$ is not a critical parameter
 - It could be added as a new state in the PHY Control state diagram to clarify the intended function
- Sample values (units are bit times)

T _m	550		
Тp	878		
T _{tx,max}	1,400		
T _{wz} (S)	4,228		
T _{wz} (M)	2,000		
T _{scr}	3,000		
T _{rcvr}	1,000		
	Symmetric	Asymmetric	
T _w (S)	12,812	10,584	
T _w (M)	11,934	11,934	

IEEE P802.3az Task Force

Questions?