

10GBASE-T EEE Synchronization

11/11/2008 Gavin Parnaby

Supporters

- George Zimmerman, Solarflare
- Brett McClellan, Solarflare
- Dimitry Taich, Teranetics
- Mike Grimwood, Broadcom

Synchronization objectives

- Maximize the quiet time for best power savings
- Maximize predictability
 - architecture optimization
 - eliminate interoperability risk
 - simplify validation
 - simplify testing
- Ideally require no new signaling
- Stable; no link degradation due to corner cases of synchronization mechanism

Proposed solution

- Master and slave establish synchronization by using the transition to PAM-16 as a common reference
 - PAM-2 infofield during initial training contains a counter that indicates the number of frames to the PAM-16 transition (state PCS_Test, clause 55.4.2.5), for master and for slave
 - Master sends infofields to slave indicating exactly when the transition to PAM-16 will happen on the master to slave side
 - Slave sends infofields to master indicating exactly when the transition to PAM-16 will happen on the slave to master side

Proposed solution

- Generate the refresh timing for both sides from fixed timing references
 - Start tx LDPC frame counter when local phy transitions from training to data mode during initial training
 - Start rx LDPC frame counter when LP transitions from training to data mode during initial training
- Active pair on both sides derived using simple modulo arithmetic from the appropriate counter
- Refresh_active for both sides generated by simple modulo arithmetic from the appropriate counter
- Both PHYs know exactly when they send and receive refresh, and the active pair
 - Following the PAM-16 transition event both sides know when refreshes are due, and which pair is active, with no ambiguity

Precise synchronization

- Existing text requires only that master and slave countdowns are synchronized to within 1 PMA training frame [= 64 LDPC frames] [clause 55.4.5.14]
 - This is not precise enough to ensure refreshes do not overlap
- New requirement that for EEE compliant PHYs, the slave synchronize its transition to PAM-16 to within 1 LDPC frame of the master, at the MDI
 - Ensures that refresh offset is < 1 LDPC frame from ideal at the slave MDI
 - Ensures that refresh offset is < 3 LDPC frames from ideal at the master MDI
- Ample opportunity to do this during the countdown to PCS_Test

Definitions

- Tc = Tq + Tr
 - The time for a complete quiet refresh cycle on a single pair
- To
 - The desired offset time between the master and slave refresh signals
- U
 - Master transmitted LDPC frame count, reset to 0 at master's Tx transition to PAM-16 at PCS_Test
- V
 - Slave transmitted LDPC frame count , reset to 0 at Slave's Tx transition to PAM-16 at PCS_Test

Assumptions

Use Tc=128, Tq+Tr=128

Tr	Τq
4	124
8	120
16	112
32	96

Generating logic

	Master Tx / Slave Rx	Master Rx / Slave Tx				
Refresh active	Tq ≤ Mod (U,Tc)	To ≤ Mod (V,Tc) < To+Tr				
Pair A	0 ≤ Mod(U,4Tc) < Tc	To+Tr ≤ Mod(V,4Tc) < To +Tr +Tc				
Pair B	Tc ≤ Mod(U,4Tc) < 2Tc	To +Tr +Tc ≤ Mod(V,4Tc) < To +Tr + 2Tc				
Pair C	2Tc ≤ Mod(U,4Tc) < 3Tc	To +Tr + 2Tc ≤ Mod(V,4Tc) < To +Tr + 3Tc				
Pair D	3Tc ≤ Mod(U,4Tc) < 4Tc	To +Tr + 3Tc \leq Mod(V,4Tc) $<$ 4Tc OR 0 \leq Mod(V,4Tc) $<$ To				

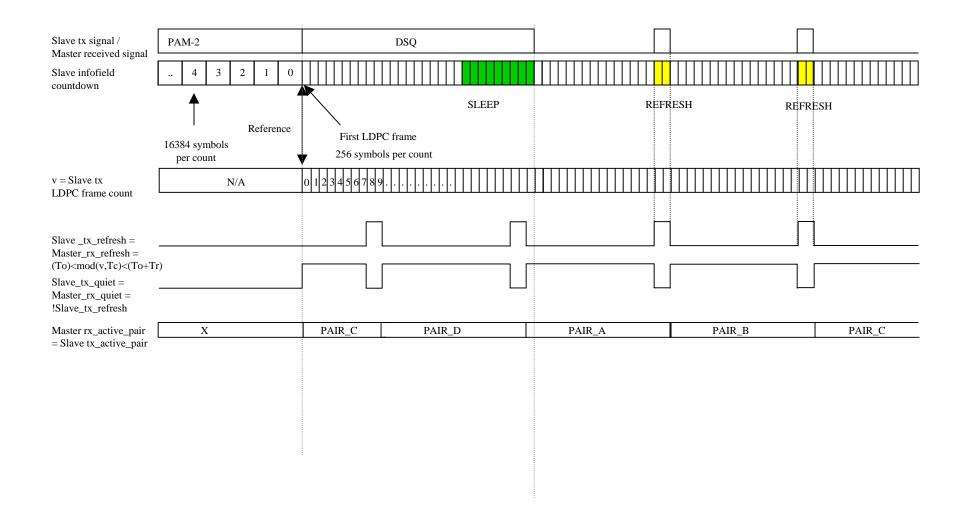
U = master transmit LDPC frame counter

V = master receive LDPC frame counter

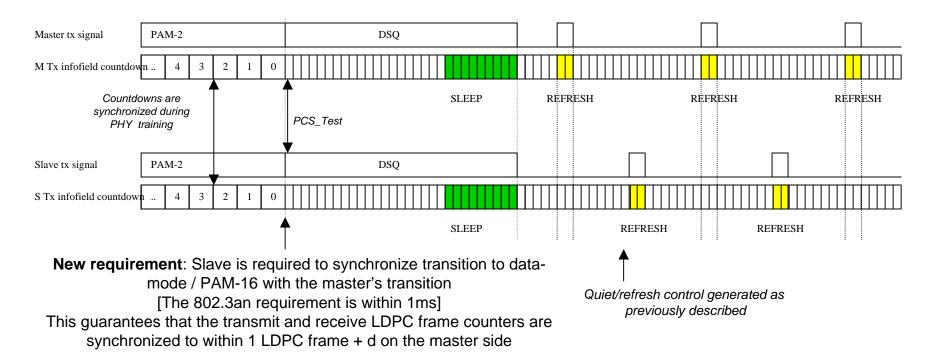
Tc = Tq + Tr = 128; To = Tc/2 - Tr

Tx_mode control

- Lpi_tx_mode =
 - NORMAL when !tx_lpi_active
 - REFRESH_A when tx_lpi_active * (tx_active_pair==PAIR_A * tx_refresh_active)
 - REFRESH_B when tx_lpi_active * (tx_active_pair==PAIR_B * tx_refresh_active)
 - REFRESH_C when tx_lpi_active * (tx_active_pair==PAIR_C
 * tx_refresh_active)
 - REFRESH_D when tx_lpi_active * (tx_active_pair==PAIR_D * tx_refresh_active)
 - QUIET when tx_lpi_active* !tx_refresh_active
 - ALERT when tx_lpi_active * tx_alert_active


Synchronization at slave

Master tx signal / Slave received signal	PAM-2	DSQ					
Master infofield countdown	4 3 2 1 0						
	Reference 16384 symbols per count	First LDPC frame 256 symbols per count	SLEEP	REFRESH	REFRE	SH	REFRESH
u = Master tx LDPC frame count	N/A	0 1 2 3 4 5 6 7 8 9					
Master_tx_refresh = Slave Rx_refresh = Tq ≤ Mod (u,Tc) Master_tx_quiet = Slave Rx _quiet = !Master_tx_refresh							
Master tx_active_pair = Slave rx_active_pair	N/A	PAIR_A	PAIR_B	PA	IR_C	PAIR_D	PAIR_A
		:					


Synchronization at master

FS-8B

Synchronization between master and slave

- Each PHY has a Tx LDPC frame counter, and an Rx LDPC frame counter
- The Tx LDPC frame counter is reset when the transmit signal transitions to data mode
- The Rx LDPC frame counter is reset when the receive signal transitions to data mode
- Transmit and receive refresh periods are deterministic thereafter, on both sides

Further details

- Refreshes that begin during SLEEP are not transmitted
 - To eliminate partial refreshes that overlap with SLEEP
 - Means that LPI state always begins with quiet or full refresh

Advantages

- Quiet / refresh is completely predictable on both sides
- Can bound refresh offset to a very small number of frames on both sides
- Easily testable
 - Only requirement is slave countdown synchronization
- Potential for higher power savings due to predictable power downs

- Method achieves robust synchronization without introducing new signaling
 - Key variables are deterministic on both sides throughout

