

Alert signal Comments for 10GBASE-T EEE

Jose Tellado Dimitry Taich Nov, 2008

Supporters

Alert Recap I

■ Definition: Signal transmitted to inform the link partner that the local transmitter is returning to the active state

▶ Features:

- Easily detectable signal with low miss-detection probability
- Short enough to ensure fast recovery time
- Listening mechanism will be active all the time
 - could be implemented with very low power consumption as possible
- Low-latency detection

Alert Recap II

- PBO identical to data mode
- PAM2 constellation (LFSR and THP are bypassed)
- Based on Matched filter bound (only 1 bit of information)
 - About 13dB more processing gain than PAM2+THP+Ideal Equalizer structure.
 - SNR_mfb ~ 10*log10(mean(S(f)) / mean(N(f)))
 - SNR_eq ~ mean(log(SNR(f))

Alert Structure Refinement

- Different PAM2 patterns for Master and Slave with low crosscorrelation peak value
 - To prevent false-alarm when Mas/Slv transmit Alert simultaneously
- Constructed by repeating a 128 PAM2 symbol sequence with Good Auto-correlation features
 - Allows simple peak detection
 - Low latency detection possible (in the order of 128 symbols, ~160nsec)
 - Seamless fit into 256 symbols LDPC frame boundaries
- $T_A = 4xT_F$ (total span is 4x256 symbols)
- Refinement
 - Composed of 7 repetitions of the 128 PAM2 sequence followed by 128 zeros (NEW)
 - Eliminates residual ISI to subsequent Wake frames
 - Receiver can combine multiple 128 sequences for additional processing gain
 - Total processing gain is 10*log10(7x128) = 29.5dB (current draft is 30dB)

Alert, Refresh, Quiet and Wake co-existence (I)

- Alert is always transmitted on the same lane
 - Master transmits on lane A
 - Slave transmits on lane C
- **□** Clarification:
 - Alert is allowed at any stage Quiet or Refresh
 - Minimizes Latency
 - If Alert is transmitted during refresh cycle, refresh transmission shall be halted (on all lanes)
 - Alert detection is reliable with very low latency so adaptation easy to halt
- Simplifies transmitter and receiver operation
 - Generation, detection, state machines, etc.

Alert, Refresh, Quiet and Wake co-existence (II)

Alert, Refresh, Quiet and Wake co-existence (III)

- Worst case "Edge" conditions:
 - Refresh followed by Alert
 - For a Master this case only happens if Alert must interrupt a refresh in progress in lane A
 - For Slave same as above for lane C
 - The total residual ISI energy from PAM2+THP Refresh frame "leaking" into following Alert is
 - Uncorrelated to the Alert signal
 - Has negligible power compared to residual Echo, NEXT, etc
 - About ~30dB smaller than S matched filter level
 - Alert followed by Wake
 - By setting last 128 Alert samples to zero the residual ISI "leaking" from Alert to the first Wake LDPC frame is about -40dB below the signal for the worst case (100m cat6a).
 - The worst case (100m) ISI degradation is about 0.1dB for the first Wake frame and nothing for subsequent

Summary

- Simple refinement to alert scheme has been presented
 - Reduces residual ISI from Alert into first Wake frame
- Proposal integrates well into Quiet/Refresh/Wake framing structure
 - Alert can be transmitted any time
 - No lane or link partner synchronization issues

