IEEE P802.3az D1.0 Clause 55 State Diagrams Updated

Rick Tidstrom, Broadcom Presented by: Mike Grimwood, Broadcom

> IEEE P802.3az Task Force Dallas, November 2008

Overview

- The IEEE Draft P802.3az D1.0 state diagrams are not consistent with the defined Sleep/Quiet/Refresh and Wake signaling and do not address the need for synchronization between link partners for the purpose of Quiet and Refresh signal alignment.
 - See parnaby_01_1108.pdf for a proposal on link partner synchronization that establishes a fixed timing reference at the start-up PAM2/PAM16 boundary.
- To resolve these inconsistencies and in support of the PAM2/PAM16 synchronization proposal, this presentation proposes the following updated state diagrams:
 - PCS 64B/65B Transmit state diagram.
 - PCS 64B/65B Receive state diagram.
 - PCS LPI Transmit state diagram.
 - PMA LPI Receive state diagram.

PCS 64B/65B Transmit State Diagram New State and Transitions

- New states to be added to support Low Power Idle:
 - TX_L (Transmit Low Power Idle)
 - TX_WN (Transmit Wake Normal)
 - TX_WE (Transmit Wake Error)
- New transitions to be added to support Low Power Idle:
 - T_TYPE(tx_raw) = LI causes transition from TX_C to TX_L
 - T_TYPE(tx_raw) = LI causes transition from TX_INIT to TX_E
 - T_TYPE(tx_raw) = LI causes transition from TX_D to TX_E
 - T_TYPE(tx_raw) = LI causes transition from TX_T to TX_E
 - T_TYPE(tx_raw) = LI causes transition from TX_E to TX_E

PCS 64B/65B Transmit State Diagram New Control Codes

- New 64B/65B control codes to support Low Power Idle.
 - T_TYPE(tx_raw) = LI for Low Power Idle
 - T_TYPE(tx_raw) = I for Normal Idle
- In the following state diagrams, the transition variable "C" normally refers to any control code. However, when a state has an exit transition conditioned on C that is parallel to any other exit transition using "LI" or "I", then C should be considered as any control code except for LI if it is used on any other exit transition from that state AND except for I if it is used on any other exit transition from that state.

PCS 64B/65B Transmit State Diagram (1 of 3)

-5

PCS 64B/65B Transmit State Diagram (2 of 3)

IEEE 802.3az, Dallas, November 2008

PCS 64B/65B Transmit State Diagram (3 of 3)

PCS LPI Transmit State Diagram

- Three new variables introduced (following parnaby_01_1108.pdf):
 - tx_lpi_full_refresh (Transmit LPI Full Refresh)
 - Is set active when (lpi_tx_mode = QUIET) * (lpi_tx_quiet_timer_done = true). It
 prevents partial refreshes from being transferred at the Sleep to LPI transition.
 - tx_refresh_active (Transmit Refresh Active)
 - 0 = Quiet
 - 1 = Refresh
 - tx_alert_active (Transmit Alert Active)

PCS LPI Transmit State Diagram (1 of 2)

PCS LPI Transmit State Diagram (2 of 2)

IEEE 802.3az, Dallas, November 2008

PCS 64B/65B Receive State Diagram New States and Transitions

- New states to be added to support Low Power Idle:
 - RX_L (Receive Low Power Idle)
 - RX_W (Receive Wake)
- New transitions to be added to support Low Power Idle:
 - T_TYPE(rx_raw) = LI causes transition from RX_C to RX_L
 - T_TYPE(rx_raw) = LI causes transition from RX_INIT to RX_E
 - T_TYPE(rx_raw) = LI causes transition from RX_D to RX_E
 - T_TYPE(rx_raw) = LI causes transition from RX_E to RX_E

PCS 64B/65B Receive State Diagram Additional Updates

- One new variable introduced:
 - Ipi_rx_wake_timer start value is equal to number of wake frames. Used to determine if link has exited successfully from Low Power Idle.

- Transitions from RX_W
 - R_TYPE(rx_coded) = I indicates that the link is working, and the transmitter is in Wake Normal state.
 - R_TYPE(rx_coded) = E indicates that the link is working, and the transmitter is in Wake Error state.
 - Ipi_rx_wake_timer_done indicates a that Wake has expired without seeing valid 65/64 blocks.

PCS 64B/65B Receive State Diagram (1 of 2)

IEEE 802.3az, Dallas, November 2008

BROADCOM.

PCS 64B/65B Receive State Diagram (2 of 2)

IEEE 802.3az, Dallas, November 2008

14

PMA LPI Receive State Diagram (1 of 1)

Note: State RX WAKE not needed.

After receiving alert, RX PMA can exit from QUIET/REFRESH cycling. PCS layer handles wake timers and processing.

Energy

Efficient Ethernet

Summary

- Updated state diagrams proposed:
 - PCS 64B/65B Transmit.
 - PCS 64B/65B Receive.
 - PCS LPI Transmit.
 - PMA LPI Receive.
- Proposed diagrams provide consistency with existing defined signaling and the proposed PAM2/PAM16 synchronization mechanism.

Thank you

IEEE 802.3az, Dallas, November 2008