

Fast link recovery proposal

11/18/2009 Gavin Parnaby

Overview of the problem

- Base standard 10GBASE-T link adaptation is limited since THP coefficients cannot be adapted
- In the base standard there is no method to change THP coefficients apart from a full retrain
- Full retrain is 2s
 - plus autoneg in some cases, plus some probability the training is repeated
- EEE mode must be somewhat less robust than the normal mode since only 4 out of 512 frames are useful data for adaptation
- If the receiver detects the link is bad the only option currently available is the full 2s retrain (EEE/non-EEE) or a vendor proprietary solution
- Also addresses dead link issue in rx-lpi

Aims

- Add a refresh monitor
 - Avoid a dead link in rx-LPI
- Add a fast retrain capability
 - Improve link robustness to fast changes in link environment
 - Functions in LPI mode and in normal mode (must)
 - Interoperable
 - Substantially reduce link down-time from 2s+ to 30ms and lower (~ 2 orders of magnitude improvement)
 - Fixes a problem in the base standard
 - THP coefficients are fixed after startup in clause 55

Capability overview

- Use autoneg bit to advertise support for fast retrain capability
 - Both sides must have enabled fast retrain
 - Fast retrain can be disabled using LLDP
- Either side can detect a link failure
 - refresh monitor state diagram and vendor specific criteria
 - snr degradation or missing refreshes
- Signal to the other side that the link is bad by signaling link failure, using an easily detected symbol sequence
 - The data link goes down on both sides immediately after the alert
- Both sides re-enter training in coefficient exchange state
 - Use the normal startup protocol, but reduce timing allowances
 - Use a max_wait_timer with reduced period
 - Leverage existing protocol

Add refresh monitor state diagram

- Add variable lpi_refresh_detect
 - Set TRUE when the receiver has reliably detected a refresh signal. The exact criteria left to the implementer.
- Add timer lpi_refresh_rx_timer
 - Period of TBD us (330us?)
 - 330us <-> 2 complete qr cycles
- Add variable lpi_fr_en
 - When TRUE the fast retrain capability is enabled. The variable is set through a management register.

LPI_REFRESH_TIMEOUT_FR and LPI_REFRESH_TIMEOUT both force a link retrain (fast / normal respectively)

Add fast retrain state diagram

- Add a variable loc_fr_req
 - when set indicates the local PHY has detected a link failure
 - set through the refresh monitor state diagram and optionally through other vendor-specific means. It causes a transition to FR_SEND_FAIL, sending the link failure signal to the link partner.
- Add a variable **loc_fr_detect**
 - set true when the link failure signal is reliably detected in the PMA
- In FR_START_TIMER both sides of the link set fast_retrain_flag<=TRUE to send the PHY control state machine back to PMA_Coef_Exch
- fr_maxwait_timer is fallback in case fast retrain fails
 - loc_rcvr_status <= NOT_OK forces full retrain
 - PCS_Status=OK sends state machine back to FR_LINK_OK

New variables

- Ipi_fr_en
 - Set TRUE through a management register. Advertised/resolved during autoneg.
- loc_fr_req
 - Set TRUE when the receiver has detected a link failure condition and is requesting a fast retrain, set FALSE otherwise
- loc_fr_detect
 - Set TRUE when the receiver has reliably detected the link failure signal. It is highly recommended that loc_fr_detect is qualified with the reception of errored blocks at the LDPC decoder output. Set FALSE when the link failure signal is not detected.

send_link_fail

 When TRUE indicates that the PMA should send the link failure signal during the current LDPC frame period (in the same manner as the LPI alert signal)

link_fail_sig_timer

 Determines the length of time the PHY sends the link failure signal. Has a period of 4 LDPC frame periods.

fr_maxwait_timer

 Determines the period of time the PHY has to set PCS_Status = OKAY following a fast retrain before the fast retrain is aborted and a full retrain performed. Has a period of TBD ms (30?).

New counters

fr_tx_counter

- Counts number of transmit link failure signals

fr_rx_counter

- Counts number of receive link failure signals
- Both counters need management registers

Link failure signaling – add to PMA Alert clause

- Link retrain request signaling is generated when send_link_fail is TRUE
 - Has priority over LPI signaling (replaces LPI alert/refresh/quiet)
- Inverted alert sequence used as 'link failure signal
 - Four frames of inverted (multiplied by –1) LPI alert signaling on the alert pair
 - No new hardware needed, can use existing alert generator/detector
 - Recommend that it is qualified with repeated frames of receive errors at LDPC decoder output

Fast retrain changes to Fig 55-24

Re-enter at PMA_Coeff_Exch

- PAM2 signaling eliminates slicer errors
- Robust training
- Reuse existing states and transition protocols
- Minimize new text

Figure 55-25 changes

FS-8B

Figure 55-26 changes

FS-8B

Existing startup timing

Table 55-6-Recommended startup sequence timing

Master	Recommended maximum time (ms)	Recommended average time (m:)	Slave
SILENT plus (PMA_Training_Init_M state AND en_slave_tx = 0)	350	315	SILENT
(PMA_Training_Init_M state AND en_slave_tx = 1) plus PMA_PBO_Exch state	480	432	PMA_Training_Init_S state plus PMA_PBO_Exch state
PMA_Coeff_Exch state	520	468	PMA_Coeff_Exch state
PMA_Fine_Adjust state	650	585	PMA_Fine_Adjust state
Total	2000	1800	

Reduce these times significantly

In fast retrain receiver is relatively converged, but needs to be fine-tuned for new environment

Shortened state timing

- Reduce infofield countdown from 10ms to <1ms
 - Minimize transition sync. overhead
 - Set fr_maxwait_timer to 30ms

State	Recommended Maximum time (ms)
PMA_Coeff_Exch state	20
PMA_Fine_Adjust state	10

Conclusion

- Improves link robustness and uptime
 - Link is down for <30ms, instead of 2s+ if a normal retrain were used
 - Vendors can optionally provide faster retrains
 - Link is much more robust to changes in the link environment
 - Interoperable
- No new hardware blocks required
 - retrain request generator/detector is the same block/function as eee alert generator/detector
 - link training is firmware-controlled in 10GBASE-T PHYs
 - Adds two simple state machine and small changes to PHY control
- EEE frame period counters reset at re-entry to PAM16
 - no effect on existing eee protocol

- Add proposed mechanism to the draft
 - Concept is well defined, details need more work
 - Adds two new state diagrams, small modifications to 3 PHY control state diagrams
- Use 10GBASE-T ad hoc to refine approach
 - Provide a complete solution for the January meeting

