

Filling the 10GBASE-T TBDs: WAKE & SLEEP

G. Zimmerman / presented by Gavin Parnaby

Solarflare Communications

15 September 2008

Revisions

- Per discussion with group:
 - Granularity of T_s and T_w will be by PHY frame (320nsec)
 - WAKE can be either Normal IDLE or Local Fault (for wake on error condition)
 - Valid SLEEP or WAKE are 1 full 64/65b block of LPI or Normal IDLE/Local Fault, respectively
 - Maximum T_w is for further study
 - Maximum T_s is for further study (request system vendor feedback)
 - Nomenclature updated per hayes_02_0508.pdf to have T_w_PHY
- New text is in color

SLEEP Signalling

- Transmitting PHY initiates sleep signalling upon receiving LP_IDLE at the XGMII, Define SLEEP, Ts
- Choices
 - Inband:
 - PRO natural choice of signal is simply passing LP_IDLE
 - CON requires waiting for receiver latency before powering down
 - Out-of-band: (including non-PAM16 signalling)
 - PRO can receive and react rapidly, shutting down the pipeline
 - CONS requires new signal to be specified, including
 - requires latency specification for transmitter and detector of out-of-band signal
 - Requires specification of extra state transitions to orderly shut-down of data
 - increases probability of data corruption, likely requires extra circuitry

Proposal – InBand SLEEP

- Signal SLEEP by passing LP_IDLE as 64/65b encoded stream
 - Minimal complexity simply pass the PCS words on, and add statemachine to detect at receiver XGMII
- Additional Requirements:
 - Receiver shall consider detect a full 64/65b block of 8 LP_IDLE signals as a valid SLEEP (8-15 LP Idle symbols)
 - T_s > 25600 + 120 BT (2.5720usec) to avoid corruption of packets in transit
 - Granularity shall be in 320nsec PHY frames (3200BT)
 - Therefore T_s min = 9 PHY frames
 - Transmitter continuously sends SLEEP for at least T_s before shutting off and going into REFRESH IDLE mode
 - Receiver can demand greater T_s through AutoNeg or LLDP,
 - Maximum T_s is for further study

WAKE Signalling

- Transmitting PHY initiates wake up signalling upon receiving IDLE following LP_IDLE at the XGMII – other than LP_IDLE or IDLE triggers Wake on Error
 - Note Transmitter has already sent, and receiving PHY has seen ALERT and activated receiver
- Choices
 - Inband:
 - PRO natural choice of signal is simply passing IDLE or Local Fault (wake on error)
 - CON requires waiting for receiver latency before successful confirmation
 - Relies on REFRESH IDLE to keep the receiver trained for quick resumption of data
 - Out-of-band: (including non-PAM16 signalling)
 - PRO can receive and react rapidly, outside of pipeline
 - May allow final training (this should not be an issue due to refresh)
 - CONS requires new signal to be specified
 - requires latency specification for transmitter and detector of out-of-band signal
 - Requires specification of extra state transitions to orderly resumption of data
 - Fully out-of-band signally may require additional flushing of receiver pipeline

Proposal – InBand WAKE

- Confirm WAKE by passing (normal) IDLE or Local Fault (LF) as 64/65b encoded stream
 - Minimal complexity transmitter flushes pipe by passing the PCS words on, and receiver adds state-machine to detect at receiver XGMII
- Additional Requirements:
 - Receiver shall consider detect a full 64/65b block of 8 IDLE or LF signals as a valid WAKE (8-15 IDLE symbols)
 - T_w_PHY > 120 BT (0.0064usec) to detect
 - Transmitter must send at least 8 normal IDLE/LF before resuming transmission (depending on 64/65b blocking)
 - Receiver can demand greater T_w_PHY through LLDP or autoneg
 - Granularity shall be in 320nsec PHY frames (3200BT)
 - Therefore T_w_PHY min = 1 PHY frame
 - Maximum T_w_PHY is for further study and system vendor feedback is requested.

