Feasibility Study for 40GE SMF 10km

- 40GbE on SMF Ad-hoc -

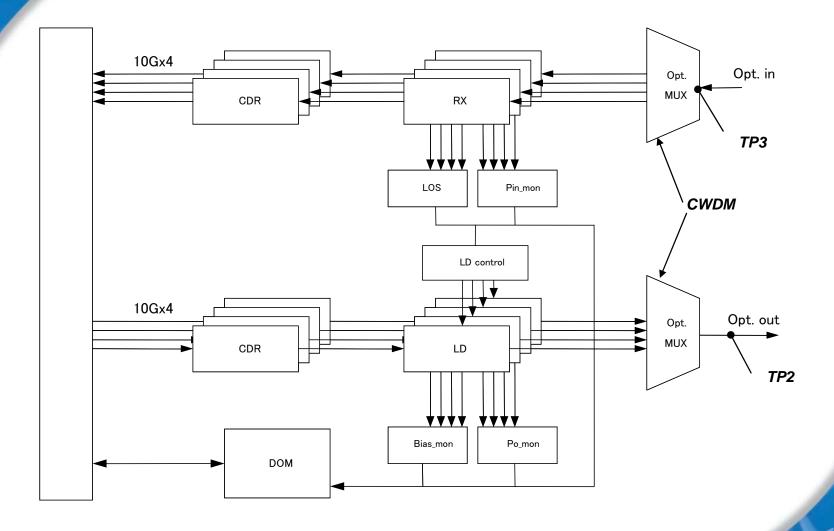
February 7th, 2008 Kengo Matsumoto (Sumitomo Electric Industries, Ltd.) Eddie Tsumura (ExceLight Communications, Inc.)

Celight Optical Transceiver for 40GE SMF 10km Architecture Alternatives

- WDM Architecture for Optical Interface
 - Optical source: DML or EML (Cooled, Semi-cooled or Uncooled), CWDM or LAN WDM (800GHz grid), 1310nm band or 1550nm band
 - Line rate: 4x10G or 2x20G (2x20G may require MUX/DEMUX IC)
 - 4x10G would be the most feasible architecture in terms of cost, power dissipation and size
- Serial Architecture for Optical Interface
 - Proven distance with NRZ coding is up to 2km on SMF
 - New coding scheme will be required for 10km
 - Architecture may not be conducive to lower cost
- Parallel Architecture for Optical Interface
 - Duplex solution may be required
 - Parallel architecture is not a good option

Line Data Rate and Optical Source Alternatives in WDM Architecture

	10km at 1310nm band	10km at 1550nm band		
10G	Yes	Yes		
DML	(Commonly used for 10G 10km non-WDM)	(Used for 10G application)		
10G	Yes	Yes		
EML	(Used for 10G application)	(Commonly used for 10G 40/80km non-WDM and DWDM)		
20G	Yes	Maybe		
DML	(Need new DML)	(need new DML)		
20G	Yes	Yes		
EML	(Need new EML)	(Need new EML)		

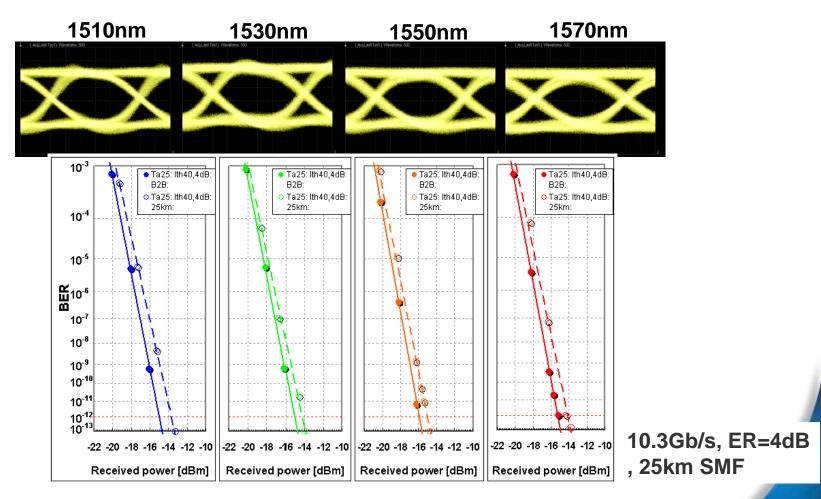

4x10G could be realized by minor design modification of existing 10G device.

Comparison between CWDM and LAN WDM in 4x10G Architecture

	10km by CWDM	10km by LAN WDM	
10G	•Low cost	 Medium cost (TEC) 	
DML	 Low power dissipation 	 Medium power dissipation 	
	•Small size	(TEC)	
		•Medium size (Larger LD	
		module size)	
10G	•Medium cost (EML+(TEC))	 Medium cost (EML+TEC) 	
EML	 Medium power dissipation 	 A little bit larger power 	
	(Additional power for EML	dissipation (TEC and	
	bias even though un-	additional power for EML	
	cooled)	bias)	
	 Medium size (Larger LD 	 Medium size (Larger LD 	
	module size)	module size)	

4x10G CWDM with DML has advantages against other solutions.

4x10G Transceiver Block Diagram


5

Optical Level Diagram Comparison between different wavelength sets

	CWDM ITU (1271- 1331nm)	CWDM ITU (1291- 1351nm)	CWDM LX4 (1275.7 - 1349.2nm)	CWDM (1510 - 1570nm)
Optical output before OMUX	-1.8	-2.0	-1.9	-2.7
(dBm @5dB ER)				
OMUX Loss (dB)	2.5	2.5	2.5	2.5
TP2_min (dBm)	-4.3	-4.5	-4.4	-5.2
Power Budget (dB) (10GEPBud3_1_16a)	7.2	7.0	7.1	6.3
TP3 (dBm)	-11.5	-11.5	-11.5	-11.5
ODMUX Loss (dB)	2.5	2.5	2.5	2.5
RX input (dBm)	-14.0	-14.0	-14.0	-14.0

Both 1310nm band and 1550nm band are feasible. 1550nm band is slightly better in optical output power

4x10G CWDM Feasibility by 1550nm band DML

1550nm band CWDM DML is feasible for SMF 10km. Similar result is expected with 1310nm band CWDM DML.

Summary

- Feasibility of 40GE SMF 10km is investigated. CWDM grid DML is expected to be the most viable solution
- Both 1310nm band and 1550nm band CWDM are feasible. 1550nm band shows small advantage in optical power output
- Recommend more discussions on wavelength to consider other possible applications:
 - Longer distance support such as 25 or 40km reach on SMF
 - OM3 duplex 100m support with 4x10G CWDM using similar architecture as 10Gbase-LX4