

Objectives for IEEE 802.3ba: New 40GbE Items

opnext

40GbE SMF: "Sped up LX4"

- All block diagram components exist
 - Laser λ 's need to be qualified = simple
 - Lasers & PDs need to be slightly higher spec than 10GBASE-LR (see next slide)
- To meet cost targets integration needed
 - Could combine above "blue" items to single IC
 - Could compact Opt. Mux/DMux & Optics

Almost same TX characteristics as 10GBASE-LR

Basics Input=	Bold	Ts(20-80)	35 ps
Q=	7.04	Ts(10-90)	53 ps
Base Rate=	10312.5 MBd	RIN(OMA)	-130 dB/Hz
Transmitter		RIN at MinER	-137.3 dB/Hz
Wavelength Uc	(1264.5 nm)	RIN_Coef=	0.70
Uw (see notes)	0.20 nm	Det.Jitter	6.0 ps inc.
Tx pwr OMA=	-3.2 dBm	DCD_DJ=	4.2 ps TP3
Min. Ext Ratio=	4.00 dB	Effect. DJ=	0.02 (UI) ex
"Worst"ave.TxPwr	-2.55 dBm	MPN k(OMA)	0
Ext. ratio penalty	3.66 dBo	Tx eye height	71.3%
Tx mask X1=	0.3 UI	ReflTx	-12 dB
X2=	0.4 UI	ModalNoisePen	0 dB
Y1=	0.25	Tx mask top	0.2 UI
Propose CWDM λ rather than LX4 λ			

Propose using same Rise time as 10GBASE-SR (slightly

tougher than LR)

40GbE SMF: Serial

PolMD DGDmax = 7.3ps per ITU recommendation for 0.3UI for DGD

- If EDC is <u>removed</u> & same link parameters are used as proposed above for LX4 "sped up" optics the Link Spreadsheet results in a margin for OM3 fiber of:
 - 100m => 2.37dB margin
 - 120m => 0.29dB margin
- If >100m is required then it is likely that some form of EDC would be necessary to close the link budget
 - According to kolesar_01_0906.pdf, 95% coverage is at 150m
 - According to flatman_01_0108.pdf, ~85% coverage at 100m for distribution to core links

Economic Factors for 40GbE

Relative cost of 10km Reach by Rate in 2010

• Exercise is somewhat contrived as the "perception" of volumes is different

- IC & sub-component manufacturers are providing outlook based on their relative expectations for 40GbE vs. 100GbE volumes
- For 2010 the volumes of the 40GbE & 100GbE are artificially "equalized". 10GBASE-LR is at projected volume level

History on LX4 versus LR (XENPAK)

XENPAK form factor considered

- Obviously lower cost 10GBASE-LR form factors exist which would make the ratio more in favor of LR
- Lumpiness in curve is due to product introductions and generation mismatch
- In SMF, parallel has been shown to be less cost competitive than serial

Source: Opnext data

40GbE SMF: Serial vs. Parallel (LX40) Relative Cost

• "Same" volumes considered

opnext

- Volume of 40GbE assumed to be "small" in 2009 thru 2010
- As 40GHz interfaces become feasible in CMOS, the 40GbE will drop in cost significantly
- Reuse of 10G elements is not practical to achieve significant relative cost reduction
- In SMF, parallel has been shown to be less cost competitive than serial