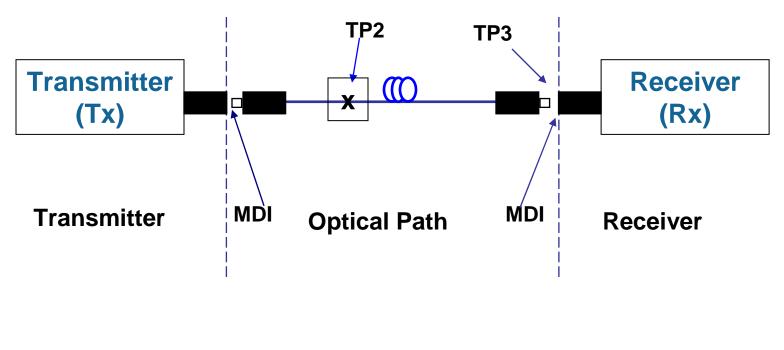
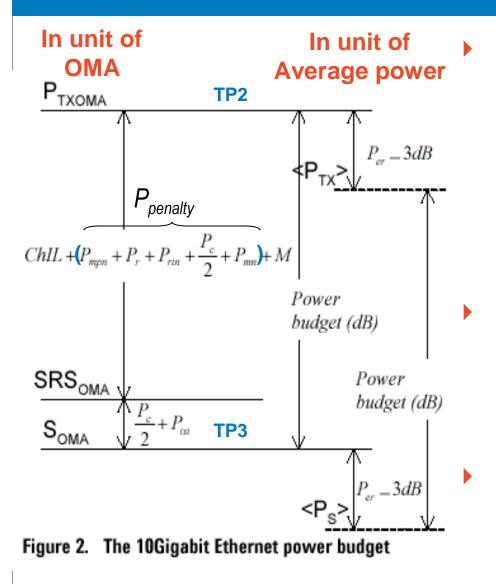
VITESSE

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4


Frank Chang Vitesse

YOUR PARTNER FOR SUCCESS


Review 10GbE 802.3ae testing standards

10GbE optical tests and specifications divided into

- Transmitter; measured at TP2
- Receiver; signals defined at TP3; (with stressed eye conformance)
- Optical path; defined as link power budget.

10GbE 802.3ae link budget based on link model vitesse

10GbE link power budget in OMA $SRS_{OMA} = P_{TXOMA} - CHIL - P_{penalty} - M$ $S_{OMA} = SRS_{OMA} - P_{ISI} - P_{C}/2$ SRS_{OMA}: Stressed Rx sensitivity in OMA (dBm) ▶ *P*_{TxOMA}: Transmit power in OMA (dBm) Channel loss (dB) CHIL : Link margin (dB) ► M: **10GbE link power budget in average power** $\langle P_{S} \rangle = \langle P_{TX} \rangle - CHIL - P_{penalty} - M$ ► <P_s>: Receiver sensitivity (dBm) <P_{Tx}>: Average transmit power (dBm) **Correlating OMA with average power**

$$S_{OMA} = \langle P_S \rangle + P_{ER} - 3dB$$
$$P_{TXOMA} = \langle P_{TX} \rangle + P_{ER} - 3dB$$

Optical specs of 10GbE standards was developed based on 10GbE link model worst-case analysis,

10GbE testing specifications: Summary of 10GBASE serial PHY interfaces

Table 52-1 – 10GBASE serial PHYs*

Name	Description	Technology
10GBASE-SR	850nm Serial LAN PHY	DML-VCSEL; MM; 2-300m
10GBASE-LR	1310nm Serial LAN PHY	DML-FP/DFB; SM; 2-10km
10GBASE-ER	1550nm Serial LAN PHY	EML-DFB; SM; 2-40km
10GBASE-SW	850nm Serial WAN PHY	DML-VCSEL; MM; 2-300m
10GBASE-LW	1310nm Serial WAN PHY	DML-FP/DFB; SM; 2-10km
10GBASE-EW	1550nm Serial WAN PHY	EML-DFB; SM; 2-40km

*: 100GBASE-SR4/10 (850nm Parallel (4/10 Lane) PMD)

40GBASE-LR4 (1310nm Parallel (4 Lane) PMD)

10GBASE-S interfaces (850nm, MMF)

Table 52-7 – 10GBASE-S transmit characteristics

Description		10GBASE-S	Unit
Signaling speed (nominal)	10GBAS- R	10.3125	GBd
	10GBAS-W	9.95328	
Signaling speed variation from	nominal (max.)		
	10GBAS- R	±100	ppm
	10GBAS- W	±20	
Center wavelength (range)		840 - 860	nm
RMS spectral width ^a (max)		See footnote ^b	
Average launch power (max)		See footnote ^c	
Average launch power ^d (min)		-7.3	dBm
Launch power (min) in OMA		See footnote ^b	
Average launch power of OFF	transmitter ^e (max)	-30	dBm
Transmitter and dispersion per	nalty ^g (max)	3.9	dB
Extinction ratio (min)		3	dB
RIN ₁₂ OMA ^e (max)		-128	dB/Hz
Optical Return Loss Tolerance	(max)	12	dB
Encircled flux		See footnote ^t	
Transmitter eye mask definition	n {X1,X2,X3,Y1,Y2,Y3}	{0.25,0.40,0.45,0.25,0.28,0.40}	

^a RMS spectral width is the standard deviation of the spectrum.

^b Trade-offs are available between spectral width, center wavelength and minimum optical modulation amplitude. See Figure 52-3 and Table 52-8.

^c The 10GBASE-S launch power shall be the lesser of the class 1 safety limit as defined by 52.10.2 or the average receive power (max) defined by Table 52-9.

^d Average launch power (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant, however a value above this does not ensure compliance.

^e Examples of an OFF transmitter are: no power supplied to the PMD, laser shutdown for safety conditions, activation of a PMD_global_transmit_disable or other optional transmitter shut down conditions.

^f The encircled flux at 19μm shall be greater than or equal to 86% an dthe encircled flux at 4.5 μm shall be less than or equal to 30% when measured into Type A1a (50/125 μm multimode) fiber per TIA-455-203.

^g TDP(max) and OMA(min) are at the respective wavelength and spectral width as specified in Table 52-8.

5

10GBASE-S interfaces (850nm, MMF)

Table 52-9 – 10GBASE-S receive characteristics

Description	10GBASE- S	Unit
Signaling speed (nominal)		
10GBAS- R	10.3125	GBd
10GBAS- W	9.95328	
Signaling speed variation from nominal (max.)	±100	ppm
Center wavelength (range)	840 - 860	nm
Average receive power ^a (max)	-1.0	dBm
Average receiver power ^b (min)	-9.9	dBm
Receiver sensitivity (max) in OMA ^c	0.077 (-11.1)	mW (dBm)
Receive reflectance (max)	-12	dB
Stressed receiver sensitivity (max) in OMA ^{d, e}	0.18 (-7.5)	mw (dBm)
Vertical eye closure penalty ^f (min)	3.5	dB
Stressed eye jitter ^g (max)	0.3	UI pk-pk
Receive electrical 3dB upper cutoff frequency	12.3	GHz

^a The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having a power level equal to the Average Receive Power (max) plus at least 1dB.

^b Average launch power (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant, however a value above this does not ensure compliance.

^c Receiver sensitivity is informative.

^d Measured with conformance test signal at TP3 (see 52.9.10.2) for BER=10⁻¹².

^e The stressed sensitivity values in the table are for system level BER measurements which include the effects of CDR circuits. It is recommended that at least 0.4dB additional margin be allocated if component level measurements are made without the effects of CDR circuits.

^f Vertical eye closure penalty is a test condition for measuring stressed receiver sensitivity. It is not a required characteristic of the receiver.

^g Stressed eye jitter is a test condition for measuring stressed receiver sensitivity. It is not a required characteristic of the receiver.

10GBASE-S interfaces (850nm, MMF)

Parameter Unit 62.5 μm MMF **50 μm MMF** Modal bandwidth as measured at 850nm 160 200 400 500 2000 MHZ•km 7.3 Power budget dB Operating distance 26 33 82 66 300 m Channel insertion loss^{c, d} 1.6 2.6 1.7 1.8 dB Allocation for penalties 5.1 5.0 4.7 dB 4.7 4.8 Addition insertion loss allowed^e 1.0 0.8 0.5 0.0 dB

Table 52-10 – 10GBASE-S link power budgets^{a,b}

^a Budget numbers are rounded to nearest 0.1dB.

^b Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

^c Operating distances used to calculate the channel insertion loss are the maximum values specified in Table 52-6.

^d The specifications for a wavelength of 840nm and a spectral width of 0.29 nm in Table 52-8 is used to calculate channel insertion loss, allocation for penalties, and additional insertion loss allowed.

^e This portion of the link budget is permitted o be used to overcome insertion loss higher than the "Channel insertion loss" values and in some cases may be less than the value shown.

Table 52-52 in 52.14 for optical fiber cabling indicates max. fiber cable attenuation 3.5dB/km at 850nm as well as fiber cabling dispersion and slope.

10GbE testing specifications: 10GBASE-L/E interfaces (1310nm/1550nm, SMF)

Table 52-12/16 – 10GBASE –L/E transmit characteristics

Description	10GBASE-L	10GBASE-E	Unit
Signaling speed (nominal)			
10GBASE- R	10.3125	10.3125	GBd
10GBASE- W	9.95328	9.95328	
Signaling speed variation from nominal (max.)			
10GBASE- R	±100	±100	ppm
10GBASE- W	±20	±20	
Center wavelength (range)	1260 –1355	1530-1565	nm
Side Mode Suppression Ratio (min)	30		dB
Average launch power (max)	0.5	4.0	dBm
Average launch power ^a (min)	-8.2	-4.7	dBm
Launch power (min) in OMA minus TDP ^b	-6.2	-2.1	dBm
Average launch power of OFF transmitter ^c (max)	-30		dBm
Optical Modulation Amplitude ^d (min)	-5.2	-1.7	dBm
Transmitter and dispersion penalty (max)	3.2	3.0	dB
Extinction ratio (min)	3.5	3	dB
RIN ₁₂ OMA ^e (max)	-128		dB/Hz
Optical Return Loss Tolerance (max)	12	21	dB
Transmitter Reflectance ^f (max)	-12		dB
Transmitter eye mask definition {X1,X2,X3,Y1,Y2,Y3}	{0.25,0.40,0.4	5,0.25,0.28,0.40}	

^a Average launch power (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant, however a value above this does not ensure compliance.

^b TDP is transmitter and dispersion penalty.

^c Examples of an OFF transmitter are: no power supplied to the PMD, laser shutdown for safety conditions, activation of a PMD_global_transmit_disable or other optional transmitter shut down conditions.

^d Even if the TDP < 1dB (-L) or 0.4dB (-E), the OMA(min) must exceed this value.

^e RIN measurement (-E) is made with return loss at 21dB.

^f Transmitter reflectance (-L) is defined looking into the transmitter.

10GbE testing specifications: 10GBASE-L/E interfaces (1310nm/1550nm, SMF)

Table 52-13/17 – 10GBASE–L/E receive characteristics

Description	10GBASE- L	10GBASE- E	Unit	
Signaling speed (nominal)				
10GBASE- R	10.3125	10.3125	GBd	
10GBASE- W	9.95328	9.95328		
Signaling speed variation from nominal (max.)	±100	±100	ppm	
Center wavelength (range)	1260 –1355	1530-1565	nm	
Average receive power (max)	0.5 ^a	-1.0	dBm	
Average receiver power ^b (min)	-14.4	-15.8	dBm	
Maximum receive power (for damage)		4.0	dBm	
Receiver sensitivity (max) ^c in OMA	0.055 (-12.6)	0.039 (-14.1)	mW (dBm)	
Receive reflectance (max)	-12	-26	dB	
Stressed receiver sensitivity (max) in OMA ^{d, e}	0.093 (-10.3)	0.074 (-11.3)	mw (dBm)	
Vertical eye closure penalty ^f (min)	2.2	2.7	dB	
Stressed eye jitter ^g (max)	0.3		UI pk-pk	
Receive electrical 3dB upper cutoff frequency	12.3		GHz	

^a The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having a power level equal to the Average Receive Power (max) plus at least 1dB.

^b Average launch power (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant, however a value above this does not ensure compliance.

^c Receiver sensitivity is informative.

^d The stressed sensitivity values in the table are for system level BER measurements which include the effects of CDR circuits. It is recommended that at least 0.4dB additional margin be allocated if component level measurements are made without the effects of CDR circuits.

^e Measured with conformance test signal at TP3 (see 52.9.10.2) for BER=10⁻¹².

^f Vertical eye closure penalty is a test condition for measuring stressed receiver sensitivity. It is not a required characteristic of the receiver.

⁹ Stressed eye jitter is a test condition for measuring stressed receiver sensitivity. It is not a required characteristic of the receiver.

10GbE testing specifications: 10GBASE-L/E interfaces (1310nm/1550nm, SMF)

Table 52-14/18 – 10GBASE-L/E link power budgets^{a,b}

Parameter	10GBASE-L	10GBASE-E		Unit
Power budget	9.4	15		dB
Operating distance	10	30	40 ^c	km
Channel insertion loss ^d	6.2 ^e	10.9 ^f		dB
Maximum Discrete Reflectance (max)		-26		dB
Allocation for penalties	3.2	3.6	4.1	dB
Addition insertion loss allowed	0.0	0.5	0.0	dB

^a Budget numbers are rounded to nearest 0.1dB.

^b Link penalty are used for link budget calculations, they are not requirements and arenot meant to be tested (-L) Link penalty are built into the transmitter specifications by testing the PMD with a maximum dispersion fiber (-E).

^c Links longer than 30km are considered engineered links. Attenuation for such links needs to be less than that guaranteed by B1.1 or B1.3 single mode fiber.

^d Operating distances used to calculate the channel insertion loss are the maximum values specified in Table 52-11 (-L) or 52-15 (-E). And fiber attenuation of 0.4dB/km at 1310 nm plus an allocation for connection and splice loss given in 52.14.2.1.

^e A transmitter wavelength of 1260 nm with a TDP of 3dB is used to calculate channel insertion loss, and allocation for penalties in this table.

^f A wavelength of 1565 nm and 3dB transmitter and dispersion penalty (TDP) is used to calculate channel insertion loss, and allocation for penalties.

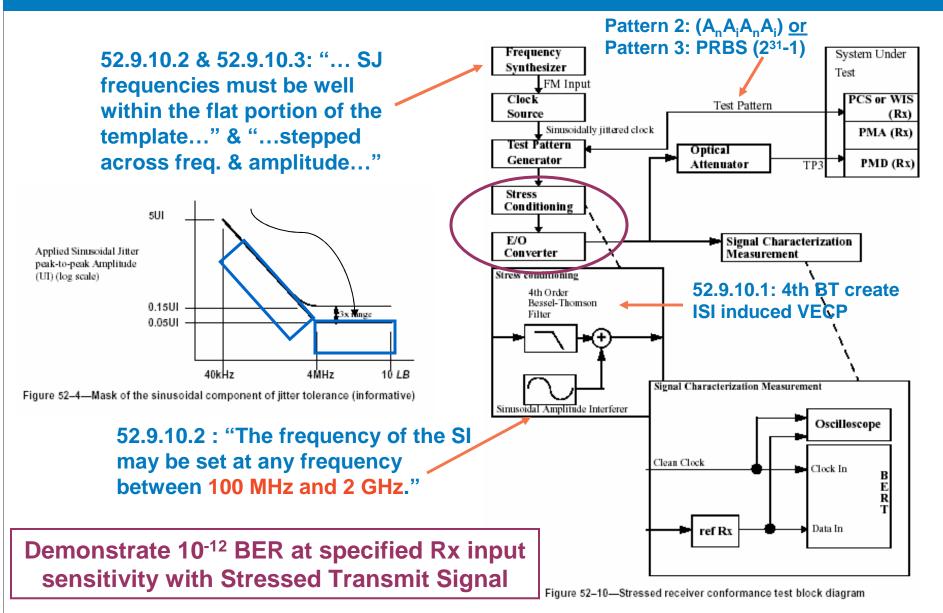
Table 52-23 & 52 for transmitter compliance channel specifications indicates the use of SMF-28 fiber with worst-case dispersion.

 $D(\lambda)=0.25 \cdot S_o \cdot \lambda \cdot \{1 \cdot (\lambda_o/\lambda)^4\}$

1300nm< λ_0 < 1324nm and S₀=0.093ps/nm² • km

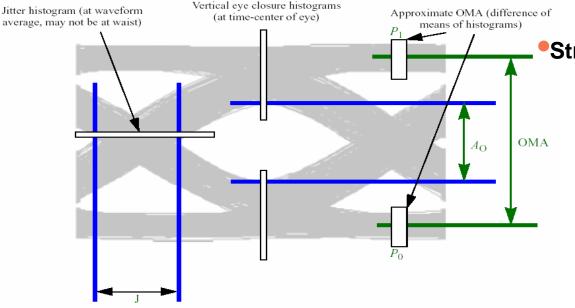
10GbE testing standards for transmit: Transmitter and dispersion penalty (TDP)

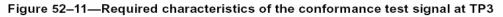
tr or tf (20-80%): <30ps VECP: <0.5dB; eye mask 0GBASE-S Reference Jitter: <0.2Ulpp transversal Transmitter filter **RIN: <-136dB/Hz** Polarization rotator Data Optical Test. Reference Transmitter BERT Splitter Fiber Attenuator. (D,U,T)Receiver Single mode CRU Clock fiber Variable Reflector

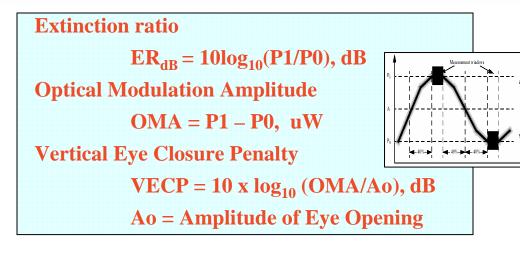

Figure 52–12—Test setup for measurement of transmitter and dispersion penalty

• 52.9.10.2 & 52.9.10.3: TDP is measured as:

- **S** = Pin for 10^{-12} BER with Reference Tx
- **P_DUT** = Pin for 10^{-12} BER with DUT Tx & fiber
- TDP = P_DUT S <= Spec Value

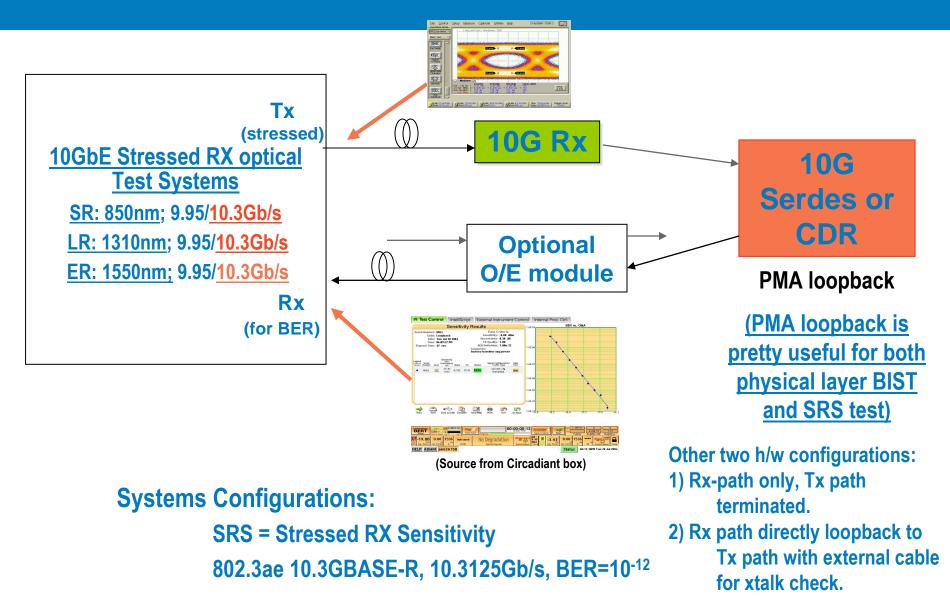

10GbE testing standards for receive:

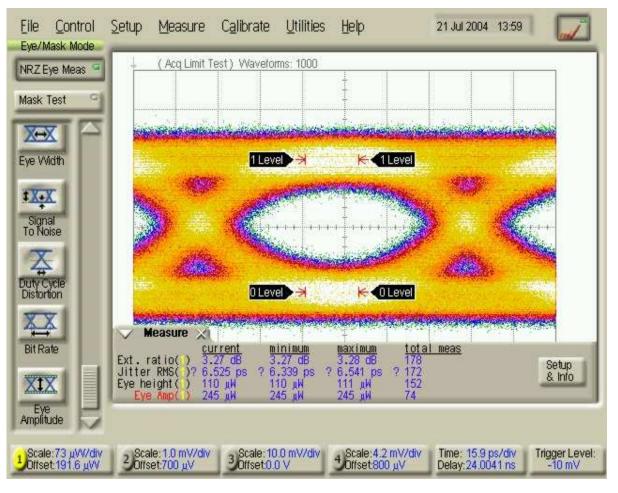

Rx stressed eye conformance testing



10GbE testing standards for receive: Rx stressed eye conformance testing

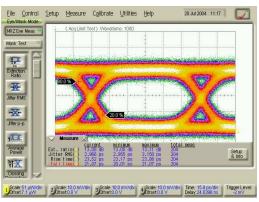
VITESSE

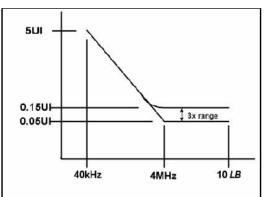



Stressed eye construction process

- PRBS >= 2^{10} -1 & Square wave
- Set extinction ratio
- Measure Optical Modulation Amplitude (OMA)
- Add ISI induced VECP relative to OMA
 - < 67% due to filtering
- Add remaining VECP through sinusoidal interferer and sinusoidal jitter
- Iterate (all) to achieve correct VECP & Jitter
- Attenuate signal to required OMA
- Step through complete sinusoidal jitter template

10GbE SRS Testing Configuration


9.95/10.3GBASE-E stressed eye diagram from Commercial testers

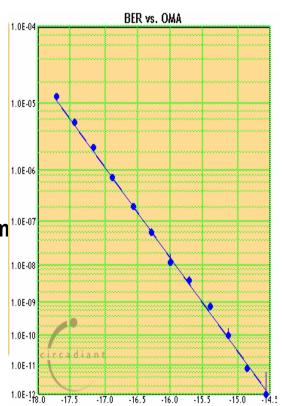

From 802.3ae SR: ER=3dB, VECP=2.7dB, SJ sweep, ISI on, AM on

Clean eye w/o SJ, AM, ISI

VITESSE

SJ sweep template

802.3ae 10GbE testing specifications: Pass/fail criteria for -L/E (1310nm/1550nm, SMF)

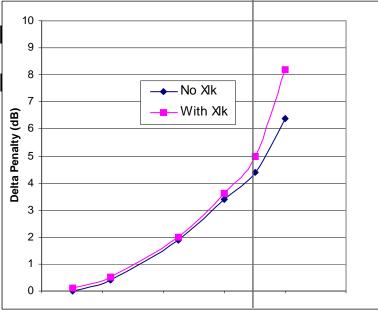

One example: 10GBASE-L/E standard for clean and stressed receiver sensitivity requirement

Description	10GBASE- L	10GBASE-E	Unit	
Signaling speed (nominal)				
10GBASE- R 10GBASE- W	10.3125 9.95328	10.3125 9.95328	GBd	
Signaling speed variation from nominal (max.)	±100	±100	ppm	
Center wavelength (range)	1260 - 1355	1530-1565	nm	
Average receive power (max)	0.5ª	-1.0	dBm	
Average receiver power ^b (min)	-14.4	-15.8	dBm	-14.1dBm for clean
Maximum receive power (for damage)		4.0	dBm	eye (informative)
Receiver sensitivity (max) ^c in OMA	0.055 (-12.6)	0.039 (-14.1)	mW (dBm)	-11.3dBm for
Receive reflectance (max)	-12	26	dB	stressed eye
Stressed receiver sensitivity (max) in OMA ^{d, e}	0.093 (-10.3)	0.074 (-11.3)	mw (dBm)	(mandatory)
Vertical eve closure penalty [†] (min)	2.2	2.7	dB	<u>(manadory)</u>
Stressed eye jitter ^g (max)	0.3		UI pk-pk	
Receive electrical 3dB upper cutoff frequency	12	2.3	GHz	

Note: SRS (max) in OMA is -7.5dBm for SR

Review off-the-shelf RX chain (BER=10⁻¹²):

- SRS values are for system level BER measurements which include the effects of CDR circuits.
- Measured SRS in OMA for Off-the-shelf parts.
 - 10GBASE-SR:
 - Normally show better than -11dBm in OMA against -7.5dBm
 - Typically >3.5dB margin.
 - 10GBASE-LR:
 - Normally show better than -13dBm in OMA against -10.3dBm^{1.0E-07}
 - Typically >2.5dB margin (slightly less)
 - ► 10GBASE-ER:
 - Normally show SRS < -14.5dBm in OMA against -11.3dBm
 - RX sens. for Clean eye is about -17dBm against -14.1dBm.
 - Typically over 3dB margin



Estimating Multi-channel Xtalk

- The Xtalk for SR4/10 and 40G-LR4 are budgeted by reduced RX sens.
- Multi-channel Xtalk mainly come from adjacent channels, estimated from prototyped QSFP 850nm transceiverrating Data.rate
- Measured Xtalk is ~1dB at operation (Sound reasonable to defined work case Xtalk at ~2dB.)

Xtalk is estimated with all other channels having ~300mVpp (diff) sync and async data input.

Consider SR4/10 SRS in Table 86-10 (#331)

VITESSE

Suggest to reuse 802.3ae 10GBASESR SRS for TP3 specs by taking into account Xtalk impacts.

Table 86–10–40GBASE–SR4 and 100GBASE–SR10 optical receiver characteristics

	Description	Туре	Value	Unit	
Ce	nter wavelength, each lane	Range	840 to 860	nm	
Da	mage threshold ^a	Min	+2	dBm	Consistent with -9.9
Av	erage power at receiver input, each lane	Max	+1 ^b	dBm	dBm single-ch specs
		Min	-7.9 60	dBm	
Re	Receiver reflectance		-12	dB	-5.5dBm (consider 2dB xtalk)
St	Stressed receiver sensitivity in OMA, each lane ^{d e}		TBD	dBm	,
Co	nditions of stressed receiver sensitivity test:				► 1.7dB (relaxed)
	Vertical eye closure penalty ^f , each lane	-	TBD	dB	• 0.3UIpp (no change)
	Stressed eye jitter J ^g , each lane	-	TBD	UI	

^a The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power. [Editor's note (to be removed prior to publication) - 1 dB above average receive power maximum, to allow headroom for receiver testing.] ^b [Editor's note (to be removed prior to publication) - For further study]

^c [Editor's note (to be removed prior to publication) - Depends on connector loss]

^dMeasured with conformance test signal at TP3 (see 86.7.5.9) for BER = 10⁻¹².

^fVertical eye closure penalty is a test condition for measuring stressed receiver sensitivity. It is not a required characteristic of the receiver.

Note: SRS values are for system level BER measurements which include the effects of CDR circuits.

^e [Editor's note (to be removed prior to publication) - Values of -5.4 dBm for Stressed receiver sensitivity in OMA. 1.67 dB for Vertical eye closure penalty and 0.37 UI Stressed eye jitter J have been proposed. Further information is invited.1

Stressed eye jitter is a test condition for measuring stressed receiver sensitivity. It is not a required characteristic of the receiver.

SR4/10 link budget in Table 86-13 (#330)

- The penalty due to crosstalk in RX is budgeted by RX sensitivity. So it's not rational to have significantly larger. Xtalk in TX is part of the penalty, during the RX-TX loopback test.
- The baseline proposal <u>pepeljugoski_01_0508</u> (Slide#13) indicate PMA as a CDR, possibly with simple EDC (similar to existing SFP+ implementation), thus help further reduce the penalty.

Parameter	Value	Unit	-6.9dBm
Effective modal bandwidth at 850 nm	2000ª	MHz•km	-0.000
Power budget	8.3 ^b	dB	
Operating distance	0.5 to 100	m	5.0dB (equivalent to
Channel insertion loss ^c	1.9 ^d	dB	signal channel link
Allocation for penalties ^e	6.4	dB	budget)
Additional insertion loss allowed	0	dB	

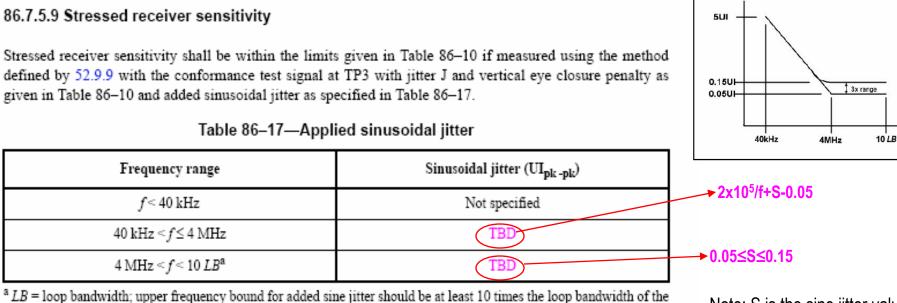
Table 86–13—40GBASE–SR4 and 40GBASE–SR10 link power budget (informative)

^a Per IEC 60793-2-10

^b [Editor's note (to be removed prior to publication) - For further study]

^c The channel insertion loss is calculated using the maximum distance specified in Table 86–1 and fiber attenuation of

3.5 dB/km at 850 nm plus an allocation for connection and splice loss given in 86.10.2.2.1.


^d [Editor's note (to be removed prior to publication) - Connector loss under study]

^e Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

SR4/10 RX jitter tolerance Table 86-17 (#333)

RX jitter tolerance is tested against sinusoidal jitter mask.

Adopt 10GbE-R SRS test specs as well-established test methodology with commercial testset available.

^a LB = loop bandwidth; upper frequency bound for added sine jitter should be at least 10 times the loop bandwidth of the receiver being tested.

For each lane, the stressed receiver sensitivity is defined with the transmit section in operation on all lanes and with the receive lanes not under test in operation. The pattern for the received compliance signal is specified in Table 86–16. TBD, or a valid 40GBASE–R4 or 100GBASE–R10 signal is sent from the transmit section of the receiver under test. The data being transmitted is asynchronous to the received data. Note: S is the sine jitter value used actually for calibration of the stressed eye.

VITESSE

Same for 40G-LR4 in Table 87-13.