Interface classifications

Howard Frazier
Broadcom Corporation
IEEE 802.3ba Task Force
March 18, 2008
Orlando, FL

Supporters

- Joel Goergen, Subi Krishnamurthy Force10
- Gary Nicholl Cisco
- Ilango Ganga Intel
- Brad Booth AMCC
- Shimon Muller Sun Microsystems

Interface classifications

- Abstract:
 - Service primitives (function calls, pseudo code)
 - Clause 2 (MAC service interface), Clause 6 (MAC/PLS service interface)
- Logical:
 - Signals, code-points, syntax, sequences, true/false
 - Clauses 22 (MII), 35 (GMII), 46 (XGMII), etc
- Electrical:
 - AC/DC parameters
 - Clauses 22 (MII), 54 (CX4)
- Optical:
 - Active output/active input parameters
 - Clauses 38, 52, 58-60, etc
- Physical:
 - Mechanical inter-matebility
 - Clause 38 (by reference to duplex SC in 38.11.3)
 - Clause 54 (by reference to 61076-3-113 in 54.8.1)

Abstract interfaces

- Formally defined using service primitives
 - MA_DATA.request (DA, SA, MSDU, FCS)
 - MA_DATA.indication (DA, SA, MSDU, FCS, Status)
- May be defined in pseudo-code
 - TransmitBit, ReceiveBit, Wait, transmitting, receiveDataValid, carrierSense
- Described from the perspective of the subordinate layer (or sublayer)

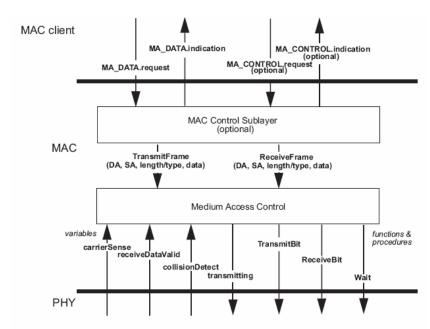
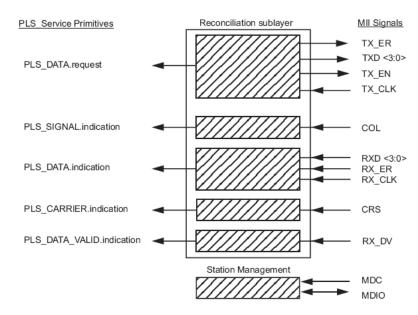
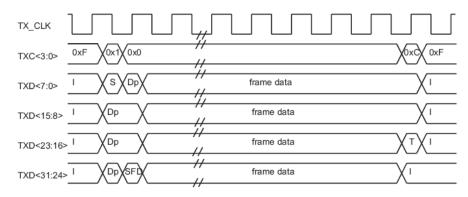


Figure 2–1—Service specification primitive relationships (optional MAC control sublayer implemented)

Abstract interfaces

- Can be mapped to logical interfaces
 - MAC/PLS service interface mapped to MII, GMII, XGMII in Clauses 22, 35, 46
- Provides consistent behavior across many generations of implementation




Figure 22–3—Reconciliation Sublayer (RS) inputs and outputs, and STA connections to MII

Abstract interfaces

- Advantages
 - implementation independent
 - long-lived
 - brief specification
- Disadvantages
 - intangible
 - do not ensure interoperability
 - no conformance test points

Logical interfaces

- The behavioral specification of an abstract interface, plus
- Signals, code-points, syntax, sequences, etc
 - TXD<31:0>, RXD<31:0>, TXC<3:0>, RXC<3:0>, TX_CLK, RX_CLK

I: Idle control character, S: Start control character, Dp: preamble Data octet, T: Terminate control character

Figure 46-5-Normal frame transmission

Logical interfaces

Advantages

- easy to map to Register Transfer Level (RTL) hardware descriptive languages (HDL)
- more rigorous than abstract interfaces

Disadvantages

- do not ensure interoperability
 - since there is no definition of the logic levels
- take longer to specify than abstract interfaces
- not as long-lived as abstract interfaces

Electrical interfaces

- The specification of a logical interface, plus
- DC characteristics
 - Voh, Vol, Vih, Vil, Ioh, Iol, Iih, Iil, etc
- AC characteristics
 - Tr, Tf, Tsu, Thd, etc

Table 35-7—DC specifications

Symbol	Parameter	Conditions		Min	Max	Units
$V_{O\!H}$	Output High Voltage	I_{OH} = -1.0 mA	$V_{CC} = Min$	2.10	3.60	V
V_{OL}	Output Low Voltage	$I_{OL} = 1.0 \text{ mA}$	$V_{CC} = Min$	GND	0.50	V
$V_{I\!H}$	Input High Voltage			1.70	_	V
V_{IL}	Input Low Voltage			_	0.90	V
I_{IH}	Input High Current	$V_{CC} = Max$	$V_{IN} = 2.1 \text{ V}$	_	40	μΑ
I_{IL}	Input Low Current	$V_{CC} = Max$	$V_{I\!N} = 0.5 \text{ V}$	-600	_	μΑ

Electrical interfaces

Advantages

- very rigorous
- high degree of interoperability
 - since it can be probed and measured

Disadvantages

- take longer to specify than logical interfaces
- not as long-lived as logical or abstract interfaces

Optical interfaces

- Specify transmit characteristics
 - Wavelength, spectral width, launch power, optical modulation amplitude, return loss, etc
- Specify receive characteristics
 - Wavelength, receive sensitivity, overload, etc

Table 59-5-1000BASE-LX10 receive characteristics

Description	Value	Unit
Signaling speed (range)	$1.25 \pm 100 \text{ ppm}$	GBd
Wavelength (range)	1260 to 1360	nm
Average receive power (max)	-3	dBm
Receive sensitivity (max)	-19.5	dBm
Receiver sensitivity as OMA (max)	-18.7 (13.4)	dBm (μW)
Bit error ratio (max)	10 ⁻¹²	
Receiver reflectance (max) ^a	-12	dB
Stressed receive sensitivity (max)	-15.4	dBm
Stressed receiver sensitivity as OMA (max)	-14.6 (35)	dBm (μW)
Vertical eye-closure penalty (min)	3.6	dB

Optical interfaces

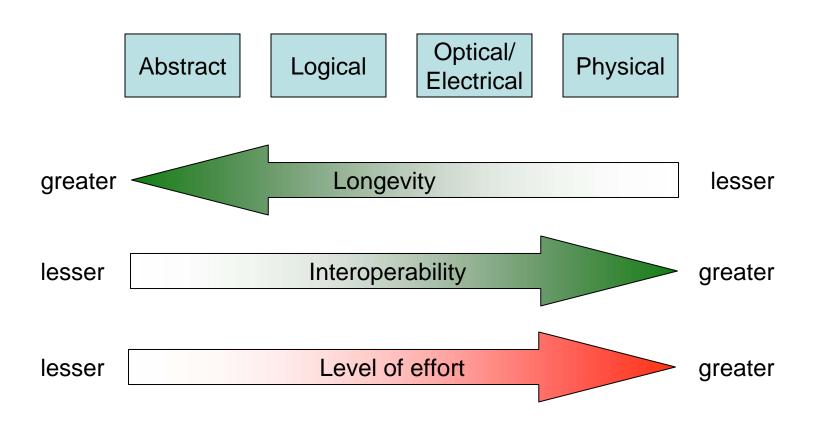
- Advantages
 - most rigorous
 - highest degree of interoperability
- Disadvantages
 - take a loooooooong time to specify
 - specification methods constantly evolve

Physical interfaces

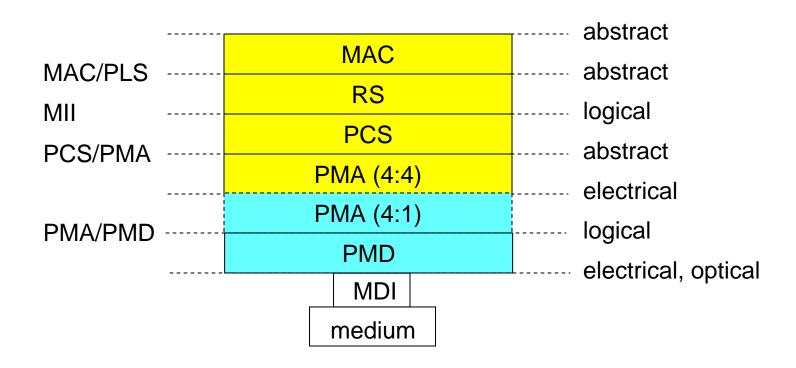
Table 54-7-CX4 lane to MDI connector pin mapping

- Specify mechanical inter-matebility
 - dimensions, clearances, etc. usually defined by reference to an IEC standard
- Specify contact assignments

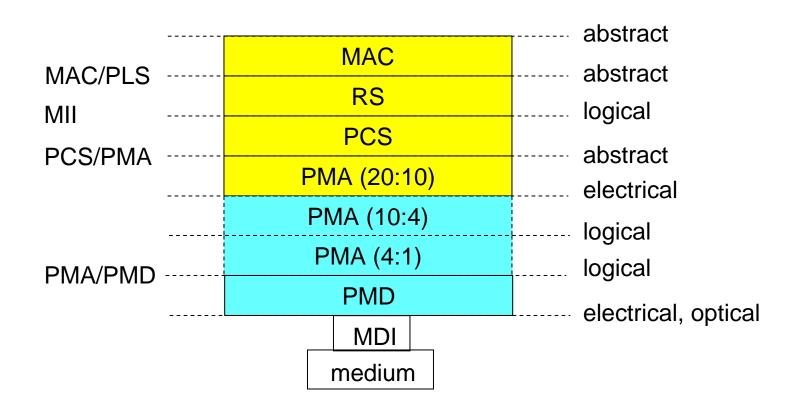
Rx lane	MDI Connector pin	Tx lane	MDI Connector pin
DL0	S1	SL0	S16
DL0 <n></n>	S2	SL0 <n></n>	S15
DL1	S3	SL1	S14
DL1 <n></n>	S4	SL1 <n></n>	S13
DL2	S5	SL2	S12
DL2 <n></n>	S6	SL2 <n></n>	S11
DL3	S7	SL3	S10
DL3 <n></n>	S8	SL3 <n></n>	S9
Signal Shield	G1	Signal Shield	G5
Signal Shield	G2	Signal Shield	G6
Signal Shield	G3	Signal Shield	G7
Signal Shield	G4	Signal Shield	G8
_	_	Link Shield	G9


Physical interfaces

- Advantages
 - most rigorous
 - highest degree of interoperability
 - free food!


- Disadvantages
 - connector wars!

Proposal for 40G and 100G interface classes


Comparison

40 G sub-layers & interfaces

100 G sub-layers & interfaces

Summary

- There are several different classes of interfaces employed in IEEE 802.3
 - Abstract, Logical, Electrical, Optical, Physical
- Each has advantages and disadvantages
 - Longevity, interoperability, level of effort
- We should strive to minimize the number of interfaces, and strive to obtain the most benefit from the effort