Merits of Selecting CWDM for 10km SMF PMD -Impact of Wavelength Grid on Optical MUX/DMUX

WE light IT UP

Masato Shishikura Matt Traverso Kiyo Hiramoto Atsushi Takai Motivation and contents of this presentation

Motivation

- Enable lowest cost, compact transceiver supporting the 10km SMF PMD in the first and future generations
- Specify a wavelength grid which minimizes cost, size, & power dissipation both in year 1 and subsequent years
- Migration to Integration within the PMD
- CWDM vs. LAN-WDM Merit/Demerit
 - -Wavelength Yield
 - -Optical MUX / DMUX
 - -Link Budget
 - -Power consumption & size
 - -Cost

Transmitter Technology Evolution: OSA

Discretes

Merit

- Optimization per device
- Segments repair/rework
- Minimizes crosstalk
- Existing opt. packaging Demerit
- High packaging costs
- Large size

Hybrid LDs+ AWG MUX

Merit

- Reduces size
- Reduces package costs

Demerit

- All components thermally connected
- Difficult to shield wire bonds
 HIGH optical loss
- Custom Packaging

Monolithic

Infinera PIC

Merit

- Minimum size
- Reduces package costs **Demerit**
- All components thermally connected
- -Crosstalk = Radio Antenna HIGH economic investment
 - Custom Packaging

3

Wavelength Grid Comparison

	Item CWDM LAN WDM		LAN WDM	
Specification	Grid	1271 - 1331	1312 center	
	Pitch	20 nm	2 – 4 nm	
	Tolerance	+/- 6.5 nm	+/- 0.36 – 0.8 nm	
Laser for 1 st generation		Cooled EA-DFB		
Laser development	Technical Issue	25G 1310nm EA-DFB 25G Operation is the major challenge Wavelength grid is very minor challenge		
Laser Manufacturing	Wafer fabrication	4 kinds wafer		
	Wavelength yield	100% Lower yield		
	Wavelength test	No	Required	
Laser Availability		Same		
Optical MUX/DMUX		Compact	Large and/or high cost	
Link Budget		1~2dB Higher Path Penalty 1~2dB less O-Mux loss	Moderate to Difficult	
Future		Cooled DFB, Uncooled EA- DFB, Uncooled DFB	Cooled DFB	

Optical MUX / DMUX Alternative

- Thin film filter (TFF)
- Arrayed waveguide grating (AWG) : large loss if using CWDM
- Diffraction grating (DG)

: low loss & compact

: smaller and lower loss than AWG

ltom	Thin film filter	Arrayed waveguide grating (AWG)		Diffraction grating (DG)	
nem	(TFF)	Silica	Semicon.(*1)	Silica	Semicon.
Pass band shape	Flat top	Gaussian		Gaussian	
4ch Insertion loss	~2.5 dB	~3 dB	~7 dB	0~2dB lower loss than AWG?	
TE-cooler	Not required	Maybe not required	Required	Required	
Notes	 Compact / low loss Loss depends on channel count Existing CWDM and DWDM 	 Loss doesn't depend on ch. coun Flat top existing, but large loss Larger size Existing DWDM O-MUX/DMUX 1300nm type does not exist, need to develop 		 Smaller than AWG Polarization-dependant loss issue Does not exist 	

[1] johnson_01_0108, Jan, 2008

5

TFF based Optical MUX / DEMUX

- TFF based O-MUX / DMUX have low loss around 2.5 dB
- Zig-Zag type is very small and preferred for compact transceiver
- Existing LX-4

TFF based Zig-Zag type for CWDM and LAN WDM

- Estimated TFF incident angle tuning range (within +/- 10% passband wavelength shift, single reflection)
 – CWDM : +/- 1.8 deg (possible)
 - LAN WDM: +/- 0.35 deg (possible but very difficult)
- •Zig-Zag O-MUX/DMUX can be applied for CWDM, but very difficult for LAN WDM (even 800GHz) due to tight angle tuning

TFF based Zig-Zag cost comparison for CWDM and **opnext** LAN WDM

 CWDM TFF-based Zig-Zag O-MUX / DMUX is lower cost than LAN WDM based on DWDM technology

Item	CWDM	LAN WDM	Note
Grid	1271 - 1331	1312 center	
Pitch	20 nm	2 – 4 nm	
Pass band	+/- 6.5 nm	+/- 0.36 – 0.8 nm	
LD linewidth(*1)	+/- 0.1 nm (EML), +/- 0.2 nm (DML)		@25G
Number of layers(*2)	50~100	150~200	TFF
Assembly tolerance(*2)	Relax (+/- 1.8 deg.)	Very tight (+/- 0.35 deg.)	
Zig-Zag type cost	Low	High	
Availability	Existing	Not existing even DWDM	

[1] HSSG, jiang_01_0507, May, 2007

[2] http://www.cubeoptics.com/img/FCKeditor/File/cwdm_white_paper.pdf

Hybrid Integration of Zig-Zag for TOSA and ROSA

- CWDM can apply Zig-Zag O-MUX/DMUX to hybrid-integrated TOSA/ROSA with collimated optics
- These are compact, low insertion loss and low power consumption
- LAN WDM is hard to apply Zig-Zag O-MUX/DMUX

opnext

Arrayed Waveguide Grating (AWG) and Diffraction Grating (DG) Optical MUX / DMUX

- DG is low insertion loss for discrete LAN WDM O-MUX / DMUX, but TE-cooler is required and it has PDL issue
- Si-based O-MUX/DMUX is lower cost if very high volume
- These are waveguide-based devices, their concerns are PDL and coupling loss to LD in hybrid integration case

ltem	Arrayed waveguide grating (AWG)		Diffraction grating (DG)	
	Silica	Semicon.(*1)	Silica (*2)	Semicon.
4ch Insertion loss	~3 dB	~7 dB	0~2dB lower loss than AWG?	
TE-cooler	Maybe not required	Required	Required	
Chip area	x 1(~50x30mm²)	~ x1/10	~ x1/4(~20x20mm²)	~ x1/20
Module size	(130x65x20mm ³)			
CWDM	N/A (higher loss due to wide pass band)			
LAN WDM	N/A (large size)	YES(higher loss)	YES	YES
Notes	 Loss not depende Larger size Existing DWDM O- 	ent on ch. count	 Smaller than AWG Polarization-dependant loss issue Not existing 	
10	[1] johnson_01_0108, Jan, 2008 [2] Janz et al., IEEE PTL, Vol.16, No.2, p503-505 (2004)			

Hybrid / Monolithic integration using AWG and DG for LAN WDM

- (1) Hybrid integration case (Silica or Silicon)
 - Compact size, but high coupling loss between WG and LD or very tight alignment such as sub-micrometer
- (2) Monolithic integration case (InP-based)
 - More compact size and improved coupling loss, but higher insertion loss and higher investment is needed (*1)

Hybrid / Monolithic type (DG)

oonex

[1] In the case of 40km objective PMD, higher loss can be mitigated with optical amplification at the receiver

Summary

- TFF-based Zig-Zag O-MUX/DMUX for CWDM exists *today*
- O-MUX/DMUX for LAN WDM is waveguide based
 - -Difficult to reduce cost
 - -Temperature dependent wavelength characteristics
 - -Polarization dependent loss (PDL)
- Zig-Zag-based O-MUX/DMUX for CWDM can achieve hybrid packaging and reduced cost with collimated optics
- Monolithic integrated TOSA/ROSA for LAN WDM may have merit of size, but tradeoffs are higher power consumption, higher loss, and higher investment cost
- CWDM is highly preferred from the view point of O-MUX/DMUX cost and availability for both 1st Gen. and future Gen.