40/100G Architecture and Interfaces proposal

Ilango Ganga, Intel
Brad Booth, AMCC
Howard Frazier, Broadcom
Shimon Muller, Sun
Gary Nicholl, Cisco

May 13, 2008
Supporters

- Adam Healey, LSI
- Andre Szczepanek, Texas Instruments
- Arthur Marris, Cadence
- Chris Cole, Finisar
- David_Law, 3com
- Frank Chang, Vitesse
- Joel Goergen, Force 10
- John Jaeger, Infinera
- Mark Gustlin, Cisco Systems
- Mark Nowell, Cisco Systems
- Osamu ISHIDA, NTT
- Petar Pepeljugoski, IBM
- Ryan Latchman, Gennum
- Subi Krishnamurthy, Force 10
Overview

- Proposed layer diagrams for 40Gb/s and 100Gb/s
 - References: ganga_01_0308
- Proposed architectures
 - See frazier_01_0308 for interface definitions
- Possible implementation examples
- Summary
Proposed 40/100GbE layer model

Note:
1. CR4 & CR10 may use optional FEC
2. Optional
Proposed 40GbE architecture

- XLGMII (intra-chip)
 - Logical, define data/control, clock, no electrical specification

- PCS
 - 64B/66B encoding
 - Lane distribution and alignment

- XLAUI (chip-to-chip)
 - 10.3125 GBaud electrical interface
 - 4 lanes, short reach

- FEC service interface
 - Abstract, can map to XLAUI electrical interface

- PMA Service interface
 - Logical n lanes, can map to XLAUI electrical interface

- PMD Service interface
 - Logical

Note: 2. Optional
3. Conditional based on PHY type
Proposed 100GbE architecture

- **CGMII (intra-chip)**
 - Logical, define data/control, clock, no electrical specification

- **PCS**
 - 64B/66B encoding
 - Lane distribution and alignment

- **CAUI (chip-to-chip)**
 - 10.3125 GBAud electrical interface
 - 10 lanes, short reach

- **FEC service interface**
 - Abstract, can map to CAUI electrical interface

- **PMA Service interface**
 - Logical n lanes, can map to CAUI electrical interface

- **PMD Service interface**
 - Logical

Note: 2. Optional
3. Conditional based on PHY type
Interface description (1)

- XLGMII (Forty Gigabit MII) or CGMII (100 Gigabit MII) – PCS interface
 - Interface between MAC and PHY layers needed for intra-chip connectivity
 - Need for Compatibility interface
 - Multiple vendors develop IP blocks for system on chip implementations
 - Provides a point of interoperability for multi vendor implementations
 - Logical definition, data width, control, clock frequency, no electrical specification
 - XLGMII and CGMII will have same logical behavior
 - Allows XLGMII/CGMII implementations with different data/control widths at either end of a link
 - See gustlin_02_0508 for further details on XL/CGMII
Interface description (2)

- XLAUI or CAUI interface (Chip-to-Chip)
 - 10.3125 GBaud electrical interface
 - Lane width: 4 lane for 40G, and 10 lane for 100G
 - Provides a point of interoperability for multi vendor implementations
 - Similar to XAUI, for 10GbE, which is widely used as MAC-PHY interface
 - Low pin count, low power interface, for example PHYs, Switches, LAN controllers
 - Common electrical definition for XLAUI/CAUI
 - 10.3125 GBaud differential signaling
 - Short reach channel: e.g. around 10 inches with 1 connector
 - Same electrical definition can be optionally used with multiple Service interfaces (e.g. PMA, FEC, etc.)
 - This is not an MDI
Interface description (3)

- **FEC Service interface**
 - Interface between PCS and optional FEC sub-layer
 - Used for backplane PHYs, may be used with other PHY types (e.g. copper cable assy)
 - FEC Service interface is similar to PMA interface
 - Possible implementations: FEC integrated with MAC/PCS, or with PMA/PMD device
 - Abstract definition, with an option to map to XLAUI/CAUI electrical interface

- **PMA Service interface**
 - Interface between PMA and PCS
 - Logical definition with n Lanes, can map to XLAUI/CAUI electrical interface

- **PMD Service interface**
 - Interface between PMD and PMA
 - PMA and PMD may be implemented together in the same device
 - Logical definition
Electrical Interfaces

Illustration of Inter-sublayer interface and Medium dependent interface

- XLAUI/CAUI and MDI may have different electrical characteristics
Possible 40Gbe Implementations

- **40GBASE-R4** (4 λ or lanes)
 - 40G MAC → PCS → PMA (4:4) → PMD (x4) → XLAUI

- **40GBASE-R4** (w/ FEC)
 - 40G MAC → PCS → FEC → PMA (4:4) → PMD (x4) → XLAUI

- **40GBASE-R4** (w/ FEC chip)
 - 40G MAC → PCS → PMA (4:4) → FEC → PMD (x4) → XLAUI

- **40GBASE-R** (serial)
 - 40G MAC → PCS → PMA (4:1) → PMD (serial) → XLAUI
Possible 100GbE implementations

100GBASE-R10
(10 λ or lanes)

100G MAC PCS PMA (20:10) PMA (10:10) PMD (x10)

CAUI

100GBASE-R10
(w/ FEC chip)

100G MAC PCS PMA (20:10) PMA (10:20) FEC PMA (20:10) PMA (10:10) PMD (x10)

CAUI

100GBASE-R4
(4 λ or lanes)

100G MAC PCS PMA (20:10) PMA (10:4) PMD (x4)

CAUI

100GBASE-R
(serial)

100G MAC PCS PMA (20:10) PMA (10:4) PMA (4:1) PMD (serial)

CAUI

Note: 1. CR10 may use optional FEC
Summary

- Proposed 40/100G high level architecture
 - Provides a common framework for both 40G and 100G
 - Supports project objectives
- Provides interfaces for multi-vendor interoperability
 - XLGMII/CGMII for intra-chip connectivity
 - XLAUI/CAUI for inter-chip connectivity