FEC and Auto-Neg proposal for 40/100G copper cable assembly

Ilango Ganga
Intel Corporation

May 13, 2008
Supporters

- Andre Szczepanek, Texas Instruments
- Joel Goergen, Force 10
Key messages

- Proposal to adopt FEC and Auto-Negotiation for 40/100G copper cable assembly
 - Leverage Clause 74 FEC as an optional sublayer for 40GBASE-CR4 and 100GBASE-CR10
 - Clause 73 Auto-Neg for negotiating FEC, and for providing backward compatibility with 10G
Proposed 40/100G Copper cable assembly layer model

- See ganga_01_0508 for proposed 40/100G architecture and layer diagram
- See diminico_01_0508 for 40/100G copper cable assembly proposal
FEC for 40/100G copper cable assembly

- Leverage 10GBASE-R FEC to specify 40GBASE-CR4 and 100GBASE-CR10 PHYs
 - Clause 74 FEC provides 2 to 2.5dB coding gain
 - Provides additional link budget, better margin
 - Increases BER performance on copper cable assemblies
 - Define as optional sublayer for CR4 and CR10

- Clause 74 FEC overview
 - (2112,2080) Binary burst error correction code
 - Can correct burst errors up to 11 bits
 - Light weight code, low overhead/latency/power
 - No increase in signaling rate or decrease in data rate

- Negotiate FEC capability through Auto-Negotiation
Forward Error Correction

- Reuse 10GBASE-R FEC specification (Clause 74)
 - Enumerate the FEC encode and decode functions for 4 lane and 10 lane operation
 - Each lane is encoded and decoded independently
 - The coding is performed on a virtual lane basis
 - 4 in case of 40G
 - 20 in case of 100G
 - See gustlin_01_0508, 40/100G PCS proposal, for further detail on VLs
 - Change to accommodate FEC sync for 4 and 10 (20 VLs) lanes
 - Same state diagram for FEC block lock
 - Report Global Sync achieved for the link only if all lanes are locked
 - Commonality with 40G backplane solution
 - Reuse the management register format
FEC MDIO variable mapping

Table 74-2—MDIO/FEC variable mapping

<table>
<thead>
<tr>
<th>MDIO variable</th>
<th>PMA/PMD register name</th>
<th>Register/bit number</th>
<th>FEC variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GBASE-R FEC ability</td>
<td>10GBASE-R FEC ability register</td>
<td>1.170.0</td>
<td>FEC_ability</td>
</tr>
<tr>
<td>10GBASE-R FEC Error Indication ability</td>
<td>10GBASE-R FEC ability register</td>
<td>1.170.1</td>
<td>FEC_Error_Indication_ability</td>
</tr>
<tr>
<td>FEC Enable</td>
<td>10GBASE-R FEC control register</td>
<td>1.171.0</td>
<td>FEC_Enable</td>
</tr>
<tr>
<td>FEC Enable Error Indication</td>
<td>10GBASE-R FEC control register</td>
<td>1.171.1</td>
<td>FEC_Enable_Error_to_PCS</td>
</tr>
<tr>
<td>FEC_corrected blocks</td>
<td>10GBASE-R FEC corrected blocks counter register</td>
<td>1.172, 1.173</td>
<td>FEC_corrected_blocks_counter</td>
</tr>
<tr>
<td>FEC_uncorrected blocks</td>
<td>10GBASE-R FEC uncorrected blocks counter register</td>
<td>1.174, 1.175</td>
<td>FEC_uncorrected_blocks_counter</td>
</tr>
</tbody>
</table>

- Enumerate the following counters for 4 and 10 (20 VLs) lanes
 - FEC_corrected_blocks_counter
 - FEC_uncorrected_blocks_counter
 - Possibly use indexed addressing to conserve MDIO address space
Auto-Neg for copper cable assembly

- Adopt Clause 73 Auto-Neg for 40GBASE-CR4 and 100GBASE-CR10
 - Use Auto-Neg to Negotiate FEC capability
 - Auto-Neg allows backward compatibility with legacy 10G CX4 PHYs
- 40GBASE-CR4 PHY when used with a CX4 style connector allows backward compatibility with legacy 10G
 - Allows implementation of dual speed 10/40G systems
- Clause 73 provides parallel detection function for compatibility with legacy PHYs that do not support Auto-Negotiation
 - New 40G PHY can use Parallel Detection for auto-detection of legacy CX4 devices
 - No impact to 10GBASE-CX4 devices
- Auto-Neg could also allow forward compatibility with future 100G devices
 - For example when 40G (4x10G) and 100G (4x25G) share the same connector solution
- Other uses of Auto-Neg
 - Can act as digital signal detect, Negotiate Pause ability
 - Allows link partners to startup with a known state
Clause 73 Auto-Neg overview

- Clause 73 defines Auto-Negotiation for backplane Ethernet
 - Provides a means to exchange information between link partners to automatically configure both devices to take maximum advantage of their abilities
 - AN is used to negotiate PHY types, negotiates FEC ability, Pause ability and also acts as a digital signal detect
- AN uses DME signaling with 48-bit base pages to exchange link partner abilities
 - Slower speed (312.5 MBaud) for reliable data transfer
 - 600 to 1200 mVp-p
 - Lane 0 of the MDI is used for Auto-Negotiation, of single or multi-lane PHYs
- AN base page contains
 - Technology Ability field to indicate PHY types
 - FEC capability
 - Pause ability
 - Remote fault
Auto-Neg changes for CR4 & CR10

- Proposed changes for 40GBASE-KR4 and 100GBASE-CR10
 - Add Technology Ability bits from the reserved space to indicate
 - 40GBASE-CR4 ability
 - 100GBASE-CR10 ability
 - Reuse AN management registers
 - No change to negotiate FEC ability
 - FEC when selected to be enabled on all lanes
 - FEC is enabled when both sides advertise FEC ability and at least one side requests to enable FEC
 - No change to Pause ability and Remote Fault bits
 - Parallel detection function to detect legacy 10GBASE-CX4 PHYs
Summary

- Adopt FEC for 40/100G copper cable assembly to increase link budget and BER performance
 - Leverage Clause 74 FEC as an optional sublayer for 40GBASE-CR4 and 100GBASE-CR10 PHYs
- Adopt Auto-Neg for 40/100G copper cable assembly to negotiate FEC ability, and to allow backward compatibility with 10G CX4 systems
 - Use Clause 73 Auto-Neg protocol and signaling