Proposal for 1310nm 40GbE SMF PMD

Jon Anderson, Opnext

IEEE P802.3bg Task Force, Geneva, Switzerland, May 2010

Introduction

- One of the key decisions for the 40GbE SMF PMD specification is selection of the transmitter operating wavelength range: 1310nm vs. 1550nm, as pointed out in anslow_02_0110 (New Orleans SG meeting, Jan. 2010)
- This contribution proposes the 1310nm tx operating wavelength range be selected and is presented in the following parts:
 - 1. Comparison of 1310nm vs. 1550nm optics solutions and transceiver trends;
 - 2. Demonstration of 1310nm solution in meeting P802.3bg objectives;
 - 3. Proposal on 1310nm optical characteristics and link budget for P802.3bg.

Supporters

- H. Aruga Mitsubishi
- H. Horikawa Oki Semiconductor
- O. Ishida NTT Labs
- Z. Li Huawei Technologies
- H. Takahashi KDDI Labs

Part 1 - Outline

- 1. Summary of 1310nm vs. 1550nm solutions
- 2. Details of 1310nm vs 1550nm optics comparison
- 3. 40G Transceiver form factor trend
- 4. 40G Transceiver relative cost trend

1310nm vs. 1550nm Comparison Summary

	1310nm Solution		1550nm Solution
	Pros		Pros
•	Provides 10km reach with negligible added cost over 2km reach	t	Backwards compatibility with legacy VSR2000-3R2 transceivers
•	dispersion control		Multiple EML suppliers
•	Multiple EML suppliers		
•	Path to uncooled EML devices and DML technology		<u>Cons</u>
•	Roadmap to smaller form factor QSFP transceiver modules	•	Reach is dispersion limited to 2km Dispersion control cost penalty
•	Can leverage greater 40GE-LR	•	No path to uncooled EML or DML devices
	transceiver IC component cost	•	No roadmap to smaller form factor transceiver modules
	<u>Cons</u>	•	Only addresses relatively small 40G
•	Non-interopt w/ estimated 25% of legacy VSR2000-3R2 transceivers*		achieve significant transceiver cost reduction
	Test plug-in needs to be developed		
* R	ef: anslow 01 0510		

18 May 2010

Comparison of 1310nm vs. 1550nm 40G EML (1)

Key differentiation is control of Chromatic Dispersion (CD) and chirp parameter (α)

- CD at 1310nm is nearly negligible compared to 1550nm on SMF
- For 2km link, chirp parameter (α):
 - required to be screened for $\alpha < 0.4$ for 1550nm EML
 - does not need to be tested for 1310nm EML.
- For 10km link, α is more tolerable for 1310nm EML than in 2 km link for 1550nm EML
- Opnext estimates 1550nm EML chip/TOSA yield loss due to chirp screening is 15%
- Chirp testing and yield loss results in ~25% higher 1550 EML TOSA cost over 1310nm EML TOSA

anderson_01a_0510

18 May 2010

Comparison of 1310nm vs. 1550nm 40G EML (2)

- 1310nm provides an easier path than 1550nm to uncooled, wide operating temperature range EML devices:
 - Easier wavelength detuning ($\Delta \lambda_{DFB-EA}$) optimization across temperature range;
 - Easier freq BW-ER optimization
- Opnext/Hitachi CRL work has demonstrated feasibility of uncooled 43 Gb/s EML laser devices
- 40G 1310nm DML device technology development in progress
- Uncooled EML and cooled DML devices on the horizon and are critical for realizing lower cost, smaller form factor 40G transceivers

Ref: H. Hayashi, et al. ECOC 2008, We3.C.3

7

anderson_01a_0510 pgs. 1436-1438 (Oct. 2007)

40G EML Optics Comparison Summary

	1310nm Solution (proposed for P802.3bg)	1550nm Solution (ITU-T G.693 VSR2000-3R2)
Output Power	2 ~ 3 dB advantage, allowing greater link budget	
Chromatic Dispersion	≤ ± 16 ps/nm	~ 40 ps/nm
EML TOSA Power Consumption	Path to uncooled device, eliminates TEC, reducing Pc over 50% (~ 1W)*	No immediate path to uncooled device TEC required; higher power
EML TOSA size	Smaller, receptacle-type form factors, e.g. TO-CAN, easier to realize*	Difficult to reduce package size
EML chip/TOSA cost	 No chirp testing, yield loss Uncooled device eliminates TEC and associated circuitry, Reduces packaging cost 50-75% lower cost may be realized* 	 Chip/TOSA chirp testing, yield loss increases cost; higher cost with TEC and bias control circuitry for dispersion control

 * Based on 10G ER cooled and uncooled EA-DFB TOSA design experience

18 May 2010

anderson_01a_0510

40G serial client module roadmap

		Current	Next Gen	Future	
1550nm	FF	3.5" x 4.5" SFF	3.2" x 5.7" CFP	??	
	Рс	12 -15W	8 -10W	Pc > 5.5W	
1310nm	FF	NA	3.2" x 5.7" CFP	QSFP 18.35mm 52.4mm Possible!	
	Рс		8 -10W	3.5 – 4.4 W Using uncooled EML & Serdes w/ optimized deskew	

18 May 2010

anderson_01a_0510

40G serial client module power comparison

	1550nm 40G 2km		1310nm 40G 10km		
Component	Current Gen SFF Power* (W)	Next Gen CFP Power** (W)	Future FF?? Power** (W)	1 st Gen CFP Power** (W)	Future QSFP Power** (W)
EML TOSA	1.5	1.5	1.5	1.5	0.5
	(cooled)	(cooled)	(cooled)	(cooled)	(uncooled)
EML Driver	1.5	1.2	0.8	1.2	0.8
PD/TIA	1.3	1.0	0.4	1.0	0.4
4:1 / 1:4 SerDes	6 - 8	2.5 — 4 1-chip	2.5 — 4 1-chip	2.5 — 4 1-chip	1.5 – 2.2 2 nd gen IC w/ optimized deskew
Misc	2 - 3	1.5 - 2	0.3 – 0.5	1.5 - 2	0.3 – 0.5
Total Pc	12 - 15	8 - 10	5.5 - 7	8 - 10	3.5 – 4.4

* Measured ** Design estimates based on 10G ER, 100G-LR4 design experience and IC supplier input 18 May 2010 anderson_01a_0510 10

Market Analysis Update: Historical and Projected 40G Unit Volume

Shipments in 1000 Units

Unit volumes are from LightCounting (LC) March, 2010 Report. LC projections use a mathematical model developed by LightCounting.

anderson_01a_0510

40G Transceiver Relative Cost Trend

- Cost model includes TOSA, driver, PD/TIA ROSA, SerDes IC, TRV package, assembly & test
- 1310nm TOSA cost reduction realized by (1) eliminated chirp test & yield loss, (2) uncooled EML
- SerDes + other pkg cost reduction for 1310nm realized by 40GE LR volume effect, assumed QSFP volume is 2x VSR volume in 2013 with increasing LR volume share future outlook
- 1550nm solution cannot address LR market, thus cannot realize increased volume cost reduction 18 May 2010 anderson_01a_0510 12

Part 2 – Demonstration of 1310nm solution

- This section presents interoperability test results of Opnext 40G 1310nm EML transmitter with an Opnext 40G 300pin LFF VSR2000-3R2 transceiver over 2km and 10km SMF links.
- Additional test results from 40G 1310nm EML device suppliers demonstrating 10km and 40km reach feasibility are provided in annex of this presentation.

Opnext 40G 1310nm EML Transmission by XMD-like TOSA

39.8 Gbit/s Optical waveforms

BTB, Pave=+4.7dBm, Er=10dB

After 2km transmission

18 May 2010

39.8 Gbit/s BER-characteristics, PRBS 2³¹-1, Room temp.

<u>Tx: 1310nm EML + Driver IC</u> <u>Rx: 40G 300-pin VSR2000-3R2 Transceiver</u>

anderson_01a_0510

Opnext 40G 1310nm EML Transmission by XLMD TOSA

Tx: 40G 300-pin VSR Transceiver with 1310nm XLMD TOSA Rx: 40G 300-pin VSR2000-3R2 Transceiver

39.8 Gbit/s, PRBS 2³¹-1, Room temp. **43.0 Gbit/s** PRBS 2³¹-1, Room temp.

anderson_01a_0510

Part 2 – Summary

- A 1310nm PMD solution which supports 40Gb/s operation over at least 2 km on SMF has been demonstrated.
- Optical compatibility of a 1310nm PMD solution with an existing 40Gb/s VSR2000-3R2 interface over 2km SMF has been demonstrated.
- Feasibility of extending the 1310nm PMD solution to 10km on SMF has been demonstrated.

Part 3 – 1310nm Optical Link Budget Proposal

It is proposed the existing optical power budget and specs given in ITU-T G959.1 for application code P1I1-3D1 (10km) and per anslow_03_0510 be adopted for specifying the 1310nm 40GBASE-LR SMF PMD.

Proposed 1310nm Transmit Characteristics

Description	Value	Unit
Signaling rate (range)	41.25 ± 100 ppm	GBd
Center wavelength (range)	1307 to 1317	nm
Side-mode suppression ratio (SMSR), (min)	35	dB
Average launch power (max)	3	dBm
Average launch power (min)	0	dBm
Dispersion penalty (max)	1	dB
Average launch power of OFF transmitter (max)	-30	dBm
Extinction ratio (min)	8.2	dB
RIN ₂₀ OMA (max)	TBD	dB/Hz
Optical return loss tolerance (max)	20	dB
Transmitter reflectance ^a (max)	-12	dB
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}	{TBD}	

^aTransmitter reflectance is defined looking into the transmitter.

Proposed 1310nm Receive Characteristics

Description	Value	Unit
Signaling rate (range)	41.25 ± 100 ppm	GBđ
Center wavelength (range)	1307 to 1317 and 1530 to 1565	nm
Damage threshold ^a (min)	4	dBm
Average receive power (max)	3	dBm
Receiver reflectance (max)	-26	dB
Receiver sensitivity (average power) (max)	-7	dBm
Receiver jitter tolerance BER limit (max)	10-12	
Receiver 3 dB electrical upper cutoff frequency, each lane (max)	49	GHz

^aThe receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level

Proposed 1310nm 10km Optical Link Budget

Parameter	Value	Unit
Power budget	7	dB
Operating distance	10	km
Channel insertion loss ^a	6	dB
Maximum discrete reflectance	-26	dB
Allocation for penalties ^b	1	dB
Additional insertion loss allowed	0	dB

^aThe channel insertion loss is calculated using the maximum distance specified in Table 89–5 and cabled optical fiber attenuation of TBD dB/km at TBD nm plus an allocation for connection and splice loss given in 89.10.2.1.
^bLink penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Conclusion

This contribution:

- Identified key advantages of selecting 1310nm operating wavelength range over 1550nm for specifying the 40GE SMF PMD;
- Demonstrated that P802.3bg reach and optical compatibility objectives can be meet with a 1310nm transmit solution.
- Proposed 1310nm optical transmit/receive characteristics and a 10km link budget for P802.3bg.
- It is proposed the 1310nm solution described herein be adopted for P802.3bg.

Annex

Additional test results from 40G 1310nm EML device suppliers demonstrating 10km and 40km reach feasibility.

Mitsubishi 40G 1310nm EML Transmission

- \rightarrow No degradation in optical waveforms
- → Low power penalty < 0.3 dB

Ref: T. Uesugi, et al., OFC2010, OThC2; Source: H. Aruga (<u>Aruga.Hiroshi@ab.MitsubishiElectric.co.jp</u>), 3/31/2010 18 May 2010 anderson_01a_0510

Sumitomo 40G 1310nm EML Transmission

Source: H. Iwadate (HIwadate@sei-device.com), 4/9/2010 18 May 2010 anderson_01a_0510

OKI Semiconductor 40G 1310nm EML Transmission

B to B

Operating Conditions:

- PRBS=2³¹-1
- Rate: 43.018Gbps
- T_EML=35degC

After 10km

Source: H. Horikawa (horikawa443@dsn.okisemi.com), 4/12/2010 18 May 2010 anderson_01a_0510

End of Contribution