Adding a Simple Package Model to the Channel Response

Richard Mellitz, Intel Corporation Liav Ben Artsi, Marvell Technology Group

Adam Healey, LSI Corporation
Charles Moore, Avago Technologies

Supporters

- Rick Rabinovich, Alcatel-Lucent

In support of comment 36, 129, 132 resolution

- Eliminate the problem caused by looking at the signal the package/board interface (aka bga ball).
- It causes a shelf on the SBR edge which is correct at the ball but not at the pad. It causes too much precursor equalization with reduces the available signal.
- The caveat is that the Rx package loss is added back in because exact s-parameter concatenation replaces the VTF (voltage transfer function)
- Such impairments cannot be addressed adequately with guard band.
- To help specify Tx and Rx Return loss using the test fixture
- Enable changes for and review of COM code as these values may change through the ballot process as RL speciation evolve (comment 129 132)
- Provide potential applicability to other IEEE standards (like CAUI).
- Provide direct understandable physical implementation rational
- This would suggest not how to build a package, but in the line of $T x / R x$ architecture,
- provide a package architecture to be use in COM with a clear relationship to the $T x / R x$ RL spec
- Define a model for COM that is understandable and alterable with a table

Simplest Useful Package Modeling

Estimate differential s-parameters for a small segment of uniform lossy transmission line

 (replaces 93A.1.2)- Segment can be either solved or measured.
- Recommend: 1mm package transmission line s4p file
- Fit RL and IL using clause 93A. 2
- Find a_{il} and a_{ff} from S11 and s21
- Determine $\gamma_{I L}$ and $\gamma_{R L}$
- Were $\gamma_{x}=a 0+a 1 \cdot \sqrt{f}+a 2 \cdot f+a 4 \cdot f^{2}$
- This form is from clause 93A.2, eq. (93A-31)
- For the transmission line
- $s 11$ tline $=e^{\gamma_{R L}}\left[\sum_{n=1}^{\text {Segments }} e^{\left.\gamma_{I L \cdot(2 \cdot n-2)}\right]}\right.$
- s21tline $=e^{\gamma_{i L} \text { segements }}$
- i.e. [$\mathrm{S}_{\text {tine }}$]
- The package transmission line is defined by 9 parameters in a table in 93a.1.2
- $a_{i l}(0,1,2,4), a_{r \mid}(0,1,2,4)$, number of segments (Pkg_length in mm)

Comparison for 12 mm line between math estimated and circuit model

Example of an estimated package and tline model

Create s parameters for pad and ball (more replacements for 93A.1.2)

- Zpad $=\frac{1}{2 * \pi * i * f * \text { Cdiepad }}$
- $s 11_{p a d}=\frac{2 * Z 0}{Z_{p a d}+2 * Z 0}, s 21_{p a d}=\frac{2 * Z p a d}{Z_{p a d}+2 * Z 0} \rightarrow\left[\mathrm{~S}_{\text {pad }}\right]$
- $Z_{\text {ball }}=\frac{1}{2 * \pi * i * f * C p k g_{-} \text {board }}$
- $s 11_{\text {ball }}=\frac{2 * Z 0}{Z_{\text {ball }}+2 * Z 0}, s 21_{\text {pad }}=\frac{2 * \text { Zball }}{Z_{\text {ball }}+2 * Z 0} \rightarrow$ [Sball]
- $\Gamma_{1}=\Gamma_{2}=\frac{\text { Z0 }- \text { Rdiepad }}{\text { Z0+Rdiepad }}$
- 3 parameters: Rdiepad, Cdiepad, Cpkg_board

Combining 2 port S parameters

Given $\left[\mathrm{S}_{1}\right]$ and $\left[\mathrm{S}_{2}\right]$
First convert to T matrixes

$$
\left[T_{1}\right]=\left[\begin{array}{cc}
\frac{1}{s 21_{1}} & \frac{s 22_{1}}{s 21_{1}} \\
\frac{s 11_{1}}{s 21_{1}} & \frac{s 11_{1} \cdot s 22_{1}-s 12_{1} \cdot s 21_{1}}{s 21_{1}}
\end{array}\right] \quad\left[T_{2}\right]=\left[\begin{array}{cc}
\frac{1}{s 21_{2}} & \frac{s 22_{2}}{s 21_{2}} \\
\frac{s 11_{2}}{s 21_{2}} & \frac{s 11_{2} \cdot s 22_{2}-s 12_{2} \cdot s 21_{2}}{s 21_{2}}
\end{array}\right]
$$

Combine T matrixes

$$
\begin{gathered}
{\left[T_{3}\right]=\left[T_{1}\right] *\left[T_{2}\right]} \\
\text { Determine }\left[\mathrm{S}_{3}\right] \\
{\left[S_{3}\right]=\left[\begin{array}{cc}
\frac{t 21_{3}}{t 11_{3}} & \frac{t 11_{3} \cdot t 22_{3}-t 12_{3} \cdot t 21_{3}}{t 11_{3}} \\
\frac{1}{t 11_{3}} & \frac{-t 12_{3}}{t 11_{3}}
\end{array}\right]}
\end{gathered}
$$

Combine parameters (replaces eq. 96a-5)

- $\left[\mathrm{S}_{\mathrm{pkgtx}}\right]=$ combine $\left(\left[\right.\right.$ combine $\left(\left[\mathrm{S}_{\mathrm{pad}}\right],\left(\left[\mathrm{S}_{\mathrm{tline}}\right]\right),\left[\mathrm{S}_{\text {ball }}\right]\right)$
- Create $\left[T_{p k g t x}\right] \rightarrow\left[\mathrm{S}_{\mathrm{pkgtx}}\right]$
- $\left[\mathrm{S}_{\mathrm{pkgrx}}\right]=$ combine $\left(\left[\mathrm{S}_{\text {ball }}\right.\right.$, combine $\left(\left[\mathrm{S}_{\text {tline }}\right]\right.$, $\left.\left[\mathrm{S}_{\mathrm{pad}}\right]\right)$
- Create [$T_{\text {pkgrx }}$]
- Channel response:
- $[T]=\left[T_{\text {pkgtx }}\right]^{*}\left[T_{\text {channel }}\right]{ }^{*}\left[T_{\text {pkgrx }}\right] \rightarrow[S]$
- $H_{21}=\frac{S_{21}\left(1-\Gamma_{1}\right)\left(1+\Gamma_{2}\right)}{1-S_{11} \Gamma_{1}-S_{22} \Gamma_{2}-S_{21} S_{12} \Gamma_{1} \Gamma_{2}+S_{11} \Gamma_{1} S_{22} \Gamma_{2}}$

Commercial simulation circuit used to examine response with proposed COM package at tp0a

25Gbps NRZ eye diagram at tpOa suggests removing transmitter filter from COM is OK because the package and die load limits transition time

Parameters (Table 93A-2)

a_il_0	$-4.453 \mathrm{e}-4+4.467 \mathrm{e}-05 \mathrm{i}$
a_il_1	$-1.049 \mathrm{e}-08-4.568 \mathrm{e}-08 \mathrm{i}$
a_il_2	$-6.409 \mathrm{e}-13-3.914 \mathrm{e}-11 \mathrm{i}$
a_il_4	$-1.669 \mathrm{e}-23+3.134 \mathrm{e}-23 \mathrm{i}$
a_rl_0	$-6.473-1.51 \mathrm{i}$
a_rl_1	$6.451 \mathrm{e}-05+3.351 \mathrm{e}-07 \mathrm{i}$
a_rl_2	$-2.712 \mathrm{e}-10-4.903 \mathrm{e}-11 \mathrm{i}$
a_rl_4	$2.167 \mathrm{e}-21+2.765 \mathrm{e}-22 \mathrm{i}$
Cdiepad	240
Rdiepad	55
Cpkg_board	180
Pkg_len	12

- a_il_0, 1,2 and 4 are insertion loss fit coefficients for $a_{i l}(0,1,2,4)$ on slide 5
- a_rl_0, 1, 2 and 4 are return loss fit coefficients for $a_{r l}(0,1,2,4)$ on slide 5
- Cdiepad, Rdiepad, Cpkg_board, and Pkg_len are the package parameter on slide 4
- Remove parameter $f_{v} f_{f}$ amd f_{n} and associated clauses.

