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IEEE802.3ba Clause 85.8.3.3 specifies a way of measuring transmitter 
transversal filter tap coefficients at TP2 after some amount of TP0 to TP2 
loss, which could be up to 6.5dB at Nyquist, plus some chip and package 
attenuation.  My simulations show that at these levels of loss the Clause 
85 method gives reasonably accurate results although there is some error 
especially for c(-1).  On the other hand for the Clause 92 TP0-TP2 with 
higher loss at Nyquist, simulations indicate significant inaccuracy 
especially for c(-1).

My simulations are done with 2 artificial channels, one using the synthesis 
technique described in benartsi_3bj_02_0513 but 154 mm long, which I 
will call the short model and is supposed to represent about loss of a 
typical Clause 85 TP0-TP2 channel but scaled to 25.78125Gb data rate.  
The other consists of the package model from Annex 93A attached to the 
host model:  Quadra_8p25in_Pair8_9_THRU.s4p provided by Megha 
Shanbhag of TE Connectivity.  I will call this the long model, and it is 
supposed to represent a Clause 92 TP0-TP2 channel.  
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Channels used
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I simulated a PRBS9 pattern through the long and the short channel, with 
either precursor de-emphasis running in steps of -0.02 from 0 to -0.26 (ie 
(c(0) – c(–1))/(c(0) + c(–1)) running from 1 to 2.1 or postcursor de-emphasis 
 running in steps of -0.02 from 0 to -0.40 ((c(0) – c(1))/(c(0) + c(1)) running 
from 1 to 5.0).  I used a data rate of 25.78125Gb and 32 times 
oversampling. 

I used the octave program “LinearFit” to extract the pulse response of the 
channel from the simulated PRBS response and “EqualizePulse” to 
compute the cursors.  “LinearFit” and “EqualizePulse” were provided by 
Adam Healey of LSI to the members of the BA group in August 2009.  

The following slides show plots of actual and “measured” values of 
precursor and postcursor taps vs actual.
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Postcursor (c(1)) measured vs actual
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Precursor (c(-1)) measured vs actual
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The post cursor measurement looks pretty good with a maximum 
error of only about 0.02 for the long channel.  Pre cursor 
measurement is not too bad for the short channel, maximum error 
<0.02, which means that the clause 85 method is good at the loss 
level it was intended for, but the error is substantial for the long 
channel, >0.07.  We need something better for Clause 92.

The problem comes about because the method uses the rising 
edge as a timing reference.  Pre cursor equalization moves the 
rising edge.  When symbol space samples are made to create the 
sampled pulse, the reference, un-equalized  pulse and the 
equalized pulse are sampled at  different times and the 
equalization of the sampled pulse is not really valid and gives 
inaccurate results. 
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I can think of 2 ways to improve the calculation of the taps:

1. Find a better timing reference than the rising edge half height 
crossing point.

2. Find the best LMS fit of the equalized pulse to the sum of 3 
symbol time spaced, weighted reference (unequalized) 
pulses, adjusting the timing of the start of the pulses to give 
the best LMS fit.  The three weights are c(-1), c(0), c(1).

I have tried method 2 on my simulated data and find the error 
small.  Unless someone is ready to state that method 1 is 
workable and gives good results I recommend using method 2 and 
making suitable changes to Clause 92.8.3.7.
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Precursor (c(-1)) measure vs actual
Using method 2
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Postcursor (c(1)) measure vs actual
Using method 2
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If we use method 2, the process will converge much faster if we 
have a fast, closed form way to find the best LMS fit of the 
equalized pulse at any timing offset.  Such a way exists let 

b[ i ]=base unequalized pulse for 0i≤MN ,0othewise
p [i ]=equalized pulse for 0i≤MN ,0otherwise
p fit [ i , joffset]=c −1⋅b [i−M joffset ]c 0⋅b [ i j offset ]c −1⋅b [iM j offset]

[o]2=∑  p [i ]− p fit [ i , o]
2

[o]2=∑ p[ i ]2−2⋅∑ p [i ]⋅p fit [ i , o]∑ p fit [ i ,o ]
2

[o]2=∑ p[ i ]2 -

2⋅∑ p [i ]⋅c −1⋅b[ i−Mo]c 0⋅b [ io ]c −1⋅b [ iMo]+

∑ c −12
⋅b [ i−Mo ]2c02

⋅b [ io ]2c 12⋅b [iMo ]2+

2⋅∑ c −1⋅c 0⋅b [ i−Mo ]⋅b [io]+

2⋅∑ c −1⋅c 1⋅b [i−Mo ]⋅b [iMo ]+

2⋅∑ c 0⋅c1⋅b[ io]⋅b [ iMo]
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B0=∑ b[ i ]2=∑ b [ io]2=∑ b [i±Mo ]2

B1=∑ b [ i ]⋅b [iM ]=∑ b[ io]⋅b [ i±Mo]

B2=∑ b [i ]⋅b[ i2⋅M ]=∑ b [i−Mo ]⋅b [iMo ]

A−1o=∑ b [i−Mo]⋅p [ i ]

A0o=∑ b[ io]⋅p[ i ]

A1 o=∑ b [ iMo]⋅p[ i ]

If we call

Then:

[o]2=∑ p[ i ]2 -
2⋅c −1⋅A−1oc0⋅A0oc 1⋅A1o+

B0⋅c −12c 02c 12+
2⋅c −1⋅c0⋅B1c −1⋅c 1⋅B2c 0⋅c 1⋅B1
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d 2

d c n
=0

0=
d 2

d c −1
=2⋅−A−1oc −1⋅B0c 0⋅B1c1⋅B2

0=
d 2

d c 0
=2⋅−A0 oc −1⋅B1c 0⋅B0c 1⋅B1

0=
d 

2

d c 1
=2⋅−A1oc −1⋅B2c0⋅B1c 1⋅B0

To minimize with respect to c(n), let

Giving 3 linear equations in 3 unknowns (c(n))

A−1o=c −1⋅B0c 0⋅B1c1⋅B2
A0o =c −1⋅B1c0⋅B0c 1⋅B1
A1 o =c−1⋅B2c 0⋅B1c 1⋅B0

With BN being constant with o and A
n
 and c(i) changing with o.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

