
07/09/13 1

Measuring Transmitter equalization
filter coefficients at the end of a

channel with loss

Charles Moore Avago Technologies

07/09/13 2

IEEE802.3ba Clause 85.8.3.3 specifies a way of measuring transmitter
transversal filter tap coefficients at TP2 after some amount of TP0 to TP2
loss, which could be up to 6.5dB at Nyquist, plus some chip and package
attenuation. My simulations show that at these levels of loss the Clause
85 method gives reasonably accurate results although there is some error
especially for c(-1). On the other hand for the Clause 92 TP0-TP2 with
higher loss at Nyquist, simulations indicate significant inaccuracy
especially for c(-1).

My simulations are done with 2 artificial channels, one using the synthesis
technique described in benartsi_3bj_02_0513 but 154 mm long, which I
will call the short model and is supposed to represent about loss of a
typical Clause 85 TP0-TP2 channel but scaled to 25.78125Gb data rate.
The other consists of the package model from Annex 93A attached to the
host model: Quadra_8p25in_Pair8_9_THRU.s4p provided by Megha
Shanbhag of TE Connectivity. I will call this the long model, and it is
supposed to represent a Clause 92 TP0-TP2 channel.

07/09/13 3

Channels used

07/09/13 4

I simulated a PRBS9 pattern through the long and the short channel, with
either precursor de-emphasis running in steps of -0.02 from 0 to -0.26 (ie
(c(0) – c(–1))/(c(0) + c(–1)) running from 1 to 2.1 or postcursor de-emphasis
 running in steps of -0.02 from 0 to -0.40 ((c(0) – c(1))/(c(0) + c(1)) running
from 1 to 5.0). I used a data rate of 25.78125Gb and 32 times
oversampling.

I used the octave program “LinearFit” to extract the pulse response of the
channel from the simulated PRBS response and “EqualizePulse” to
compute the cursors. “LinearFit” and “EqualizePulse” were provided by
Adam Healey of LSI to the members of the BA group in August 2009.

The following slides show plots of actual and “measured” values of
precursor and postcursor taps vs actual.

07/09/13 5

Postcursor (c(1)) measured vs actual

07/09/13 6

Precursor (c(-1)) measured vs actual

07/09/13 7

The post cursor measurement looks pretty good with a maximum
error of only about 0.02 for the long channel. Pre cursor
measurement is not too bad for the short channel, maximum error
<0.02, which means that the clause 85 method is good at the loss
level it was intended for, but the error is substantial for the long
channel, >0.07. We need something better for Clause 92.

The problem comes about because the method uses the rising
edge as a timing reference. Pre cursor equalization moves the
rising edge. When symbol space samples are made to create the
sampled pulse, the reference, un-equalized pulse and the
equalized pulse are sampled at different times and the
equalization of the sampled pulse is not really valid and gives
inaccurate results.

07/09/13 8

I can think of 2 ways to improve the calculation of the taps:

1. Find a better timing reference than the rising edge half height
crossing point.

2. Find the best LMS fit of the equalized pulse to the sum of 3
symbol time spaced, weighted reference (unequalized)
pulses, adjusting the timing of the start of the pulses to give
the best LMS fit. The three weights are c(-1), c(0), c(1).

I have tried method 2 on my simulated data and find the error
small. Unless someone is ready to state that method 1 is
workable and gives good results I recommend using method 2 and
making suitable changes to Clause 92.8.3.7.

07/09/13 9

Precursor (c(-1)) measure vs actual
Using method 2

07/09/13 10

Postcursor (c(1)) measure vs actual
Using method 2

07/09/13 11

If we use method 2, the process will converge much faster if we
have a fast, closed form way to find the best LMS fit of the
equalized pulse at any timing offset. Such a way exists let

b[i]=base unequalized pulse for 0i≤MN ,0othewise
p [i]=equalized pulse for 0i≤MN ,0otherwise
p fit [i , joffset]=c −1⋅b [i−M joffset]c 0⋅b [i j offset]c −1⋅b [iM j offset]

[o]2=∑  p [i]− p fit [i , o]
2

[o]2=∑ p[i]2−2⋅∑ p [i]⋅p fit [i , o]∑ p fit [i ,o]
2

[o]2=∑ p[i]2 -

2⋅∑ p [i]⋅c −1⋅b[i−Mo]c 0⋅b [io]c −1⋅b [iMo]+

∑ c −12
⋅b [i−Mo]2c02

⋅b [io]2c 12⋅b [iMo]2+

2⋅∑ c −1⋅c 0⋅b [i−Mo]⋅b [io]+

2⋅∑ c −1⋅c 1⋅b [i−Mo]⋅b [iMo]+

2⋅∑ c 0⋅c1⋅b[io]⋅b [iMo]

07/09/13 12

B0=∑ b[i]2=∑ b [io]2=∑ b [i±Mo]2

B1=∑ b [i]⋅b [iM]=∑ b[io]⋅b [i±Mo]

B2=∑ b [i]⋅b[i2⋅M]=∑ b [i−Mo]⋅b [iMo]

A−1o=∑ b [i−Mo]⋅p [i]

A0o=∑ b[io]⋅p[i]

A1 o=∑ b [iMo]⋅p[i]

If we call

Then:

[o]2=∑ p[i]2 -
2⋅c −1⋅A−1oc0⋅A0oc 1⋅A1o+

B0⋅c −12c 02c 12+
2⋅c −1⋅c0⋅B1c −1⋅c 1⋅B2c 0⋅c 1⋅B1

07/09/13 13

d 2

d c n
=0

0=
d 2

d c −1
=2⋅−A−1oc −1⋅B0c 0⋅B1c1⋅B2

0=
d 2

d c 0
=2⋅−A0 oc −1⋅B1c 0⋅B0c 1⋅B1

0=
d 

2

d c 1
=2⋅−A1oc −1⋅B2c0⋅B1c 1⋅B0

To minimize with respect to c(n), let

Giving 3 linear equations in 3 unknowns (c(n))

A−1o=c −1⋅B0c 0⋅B1c1⋅B2
A0o =c −1⋅B1c0⋅B0c 1⋅B1
A1 o =c−1⋅B2c 0⋅B1c 1⋅B0

With BN being constant with o and A
n
 and c(i) changing with o.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

