

Update of DkDf Algebraic Model

IEEE March 2012 Plenary - Waikoloa Village, HI

Beth Kochuparambil - Cisco Systems, Inc.

Joel Goergen - Cisco Systems, Inc.

Background

- Model first shown in Kochuparambil_01_1111
 - Filling a gap allows us to talk the same "language"
 - Great for initial channel loss discussions!
- Model is made public: <u>http://www.ieee802.org/3/bj/public/tools.html</u>
- No secret sauce
 - All equations used in the model are given in reference document
 - Also in public Tools folder; link above

Updated to Version 2.03

- Thank you for all feedback; more is welcome!
- Version 2.03 is now available online

Changes from Version 2.02

- Rearrangement of "Backplane w/ 2 connectors, 1 material" GUI due to confusion
- Correction of linecard SR equations
 - Backplane equation was incorrect since its addition
 - Linecard eq'n error (v2.02) \rightarrow changed to match reference

Updated to Version 2.03

 Note that these changes did NOT change the loss parameters accepted in the January motion

Attenuation* (dB/in) at:	1 GHz	6.5 GHz	7 GHz	12.89 GHz	14 GHz	
Meg6_LowSR – Wide	0.0951	0.4159	0.4433	0.7562	0.8127	
Meg6_LowSR – Narrow	0.1466	0.5849	0.6205	1.0152	1.0847	
Meg6_HighSR – Wide	0.1175	0.5960	0.6367	1.0891	1.1688	*
Meg6_HighSR – Narrow	0.1856	0.8971	0.9557	1.5924	1.7020	
ImpFR4_LowSR – Wide	0.1202	0.6096	0.6541	1.1772	1.2734	*
ImpFR4_LowSR – Narrow	0.1717	0.7794	0.8323	1.4410	1.5512	
ImpFR4_HighSR – Wide	0.1427	0.7904	0.8484	1.5158	1.6367	
ImpFR4_HighSR – Narrow	0.2106	1.0930	1.1692	2.0283	2.1813	

*Model entries can be found in backup slides

**Validations unchanged from version change can be found in backup slides

Tool Validation (updated to v2.03)

TE Connectivity - 802.3bj submitted channel

DAUGHTER CARD

- Board Material = Megtron6 VLP
- Trace length = 5"
- Trace geometry = Stripline
- Trace width = 6 mils
- Differential trace spacing = 9 mils
- PCB thickness = 110mils, 14 layers
- Counterbored vias, 1 6mil stub
- Test Points = 2.4mm (included in data)

BACKPLANE

- Board Material = Megtron6 HVLP
- Trace length = 17"
- Trace geometry = Stripline
- Trace width = 8 mils
- Differential trace spacing = 13 mils
- PCB thickness = 200 mils, 20 layers

Snapshot from

shanbhag 02 0511

Counterbored vias, 1 – 6mil stub

- w and L given.
- t was assumed as ½ oz Cu
- b assumed to be calculated by $b = [(t_{Total} - 0.6*N_{lyrs})/(N_{lyrs}-1)] *2 + 0.6$

Back	plane/Trace Mater	rial		Lir	necard A Material		Lir	necard B Material	
Length	(inch)	17	at]	Length (inch)	5	Length (inch)	5
Trace Wid	lth (mil)	8	5	Trace Width (mil) 5 Cu Thickness (mil) 0.6 Diel. Thickness (mil) 16.231 Freq Dk Df 1005.02 2.57 0.0039		Trace Wid	lth (mil)	6	
Cu Thickn	ess (mil)	0.6	<u></u>	Cu Thickne	ess (mil)	0.6	Cu Thickne	ess (mil)	0.6
Diel. Thickr	ness (mil)	20.389	1dE	Diel. Thickn	iess (mil)	16.231	Diel. Thickn	iess (mil)	16.231
Freq	Dk	Df	1.2	Freq	Dk	Df	Freq	Dk	Df
1.00E+08	3.67	0.0039	1	1.00E+08	3.67	0.0039	1.00E+08	3.67	0.0039
1.00E+09	3.65	0.004	75(1.00E+09	3.65	0.004	1.00E+09	3.65	0.004
2.00E+09	3.59	0.0043	12.	2.00E+09	3.59	0.0043	2.00E+09	3.59	0.0043
5.00E+09	3.576	0.0049	ы	5.00E+09	3.576	0.0049	5.00E+09	3.576	0.0049
1.00E+10	3.3494	0.0055	155	1.00E+10	3.3494	0.0055	1.00E+10	3.3494	0.0055
2.00E+10	3	0.0065	8	2.00E+10	3	0.0065	2.00E+10	3	0.0065
Low Roughness	20	6.0E-07	39	Medium Roughness	31	6.0E-07	Medium Roughness	31	6.0E-07

Tool Validation (updated to v2.03)

TE Connectivity - 802.3bj submitted channel

- Test channel is 27in total (5" + 17" + 5") length
- Single-ended and differential measureme nts shown
- Remember measureme nts include the 2 launches (including SMA conn. and vias)

IBM Corporation - 802.3bj submitted channel

1 Meter Backplane Channel Construction:

Back	plane/Trace Mate	rial		Linecard A Material]	Lir	necard B Material	
Length ((inch)	29	#]	Length (inch) 5.1		5.1		Length (inch)	5.1
Trace Wid	tth (mil)	7	5	Trace Width (mil) 5.7		1	Trace Width (mil)		5.7	
Cu Thickne	ess (mil)	1.2	-	Cu Thickness (mil) 1.2		Cu Thickness (mil)		1.2		
Diel. Thickr	ness (mil)	18.704	1dE	Diel. Thickness (ml) 15.54		Diel. Thickness (mil)		15.54		
Freq	Dk	Df	1.2	Freq	Dk	Df		Freq	Dk	Df
1.00E+08	3.67	0.0039	1	1.00E+08	3.67	0.0039		1.00E+08	3.67	0.0039
1.00E+09	3.65	0.004	75(1.00E+09	3.65	0.004	1	1.00E+09	3.65	0.004
2.00E+09	3.59	0.0043	12.	2.00E+09	3.59	0.0043	1	2.00E+09	3.59	0.0043
5.00E+09	3.576	0.0049	ы	5.00E+09	3.576	0.0049	1	5.00E+09	3.576	0.0049
1.00E+10	3.3494	0.0055	122	1.00E+10	3.3494	0.0055	1	1.00E+10	3.3494	0.0055
2.00E+10	3	0.0065	8	2.00E+10	3	0.0065		2.00E+10	3	0.0065
Low Roughness	20	6.0E-07	23d	Medium Roughness	31	6.0E-07		Medium Roughness	31	6.0E-07

IBM Corporation - 802.3bj submitted channel

- Test channel is 39.2in total (5.1" + 29" + 5.1") length
- Differential measurement shown
- Do not know if measurement include the 2
 SMA launches

Emerson - 802.3bj submitted channel

Snapshots from

BACKPLANE

- C4440 Rev.B (8406883e61b)
- Nelco 4000-13SI, 22 Layer, 227 mil
- DAUGHTER CARD
 - Test-F140 ((6306855G) meier_01_1011
 - FR408, 16 Layer, 100mil
 - Trace length ~ 6.2 inch
 - Normal, High and Low Impedance
 - Typical ATCA board topology
 - ZDplus Backplane connector
 - SMA Lunch for TP1 and TP4
 - Receiver AC Capacitors

Longest Link

- Channel Length
 - Tx Daughter Card ~ 6.2 inch
 - Backplane ~ 10.5 inch
 - Rx Daughter Card ~ 6.2 inch
- L given.
- t was *assumed* as 1.2mil (1 oz Cu)
- Assumed Cu surface roughness to be between Med and High (both shown)
- b assumed to be calculated by: $b = [(t_{Total} 1.2*N_{lyrs})/(N_{lyrs}-1)]*2 + 1.2$
- Board thickness \rightarrow b \rightarrow w (given t, b, material above found w that gives 50 ohms @5G)

Note: Limited information was given;

Assumptions were made, so don't expect it to be exact!

Shortest Link

- Channel Length
 - Tx Daughter Card ~ 6.2 inch
 - Backplane 2.6 to 3.0 inch
 - Rx Daughter Card ~ 6.2 inch

Version 2.03	LOSS SNAPSHOT:	Loss at 5GHz:	16.23	dB l	Loss at 12.75GHz:	37.08 dB	 Loss at 14GHz:	40.2 dB	
Backp	lane/Trace Materi	ial		Lin	ecard A Material		Lin	ecard B Material	
Length	(inch)	10.5	ť 1.	Length (inch)	6.2	Length (i	inch)	6.2
Trace Wid	ith (mil)	9.17	S S	Trace Widt	th (mil)	4.23	Trace Widt	h (mil)	4.23
Cu Thickne	ess (mil)	1.2	50	Cu Thickne	ss (mil)	1.2	Cu Thickne:	ss (mil)	1.2
Diel. Thickr	ness (mil)	20.305	-ар	Diel, Thickn	ess (mil)	11.9733	Diel Thickn	ess (mil)	11.9733
Fre	Dk	Df	.21	Fre	Dk	Df	Fr	Dk	Df
1,0	3.6	0.0092		17 🔶 🗍	3.81	0.01		3.81	0.01
	3.52	0.0115	22G		3.78	0.0112		3.78	0.0112
	3.49	0.0108	2.7		3.77	0.0116		3.77	0.0116
ول 🔨	3.46	0.011	31	وں 🏹	3.75	0.0122	-09	3.75	0.0122
_∕£+10	3.44	0.0112	ŝ	∫E+10	3.72	0.012	JE+10	3.72	0.012
00E+10	3.43	0.0114	<u></u> କୁ	2.00E+10	3.7	0.012	2.00E+10	3.7	0.012
High Roughness	65	6.0E-07	3df	High Roughness	65	6.0E-07	High Roughness	65	6.0E-07

Estimated vs. Measured Attenuation from Emerson Data - Meier_01_1011

Possible Advancements

- After some thought over suggested advances, we'd like to spend time looking into implementing vias and s-parameter output
- Not guaranteeing implementation

• We welcome collaboration on these topics

Happy Channel Estimating...

THANK YOU FOR YOUR TIME!

Backup Slides

Model Entries used: Megtron 6

Nom	inal Megtr	ron 6	Low Tol. Meg6			Hi	g6	
Freq	Dk	Df	Freq	Dk	Df	Freq	Dk	Df
1.00E+08	3.67	0.0039	1.00E+08	3.61	0.0024	1.00E+08	3,73	0.0054
1.00E+09	3.65	0.004	1.00E+09	3,59	0.0025	1.00E+09	3,71	0.0055
2.00E+09	3.59	0.0043	2.00E+09	3.53	0.0028	2.00E+09	3.65	0.0058
5.00E+09	3.576	0.0049	5.00E+09	3.516	0.0034	5.00E+09	3.636	0.0064
1.00E+10	3.3494	0.0055	1.00E+10	3.2894	0.004	1.00E+10	3.4094	0.007
2.00E+10	3	0.0065	2.00E+10	2.94	0.005	2.00E+10	3.06	0.008

- Slide 4: Approved Loss Parameters
 - Meg6_LowSR Wide
 - High Tol. Meg6, w = 7, b = 14.74, t = 0.6, L = 1, SR = Low (20x0.6μm)
 - Meg6_LowSR –Narrow
 - High Tol. Meg6, w = 4, b = 9.23, t = 0.6, L = 1, SR = Low (20x0.6μm)
 - Meg6_HighSR Wide
 - High Tol. Meg6, w = 7, b = 14.74, t = 0.6, L = 1, SR = High (65x0.6μm)
 - Meg6_HighSR Narrow
 - High Tol. Meg6, w = 4, b = 9.23, t = 0.6, L = 1, SR = High (65x0.6μm)

Model Entries used: Improved FR4

Non	ninal Imp.	FR4	Lov	v Tol. Imp l	FR4	Hig	h Tol. Imp	FR4
Freq	Dk	Df	Freq	Dk	Df	Freq	Dk	Df
1.00E+08	3.6	0.0092	1.00E+08	3.54	0.0077	1.00E+08	3.66	0.0107
1.00E+09	3.6	0.0092	1.00E+09	3.54	0.0077	1.00E+09	3.66	0.0107
2.00E+09	3.5	0.0115	2.00E+09	3.44	0.01	2.00E+09	3,56	0.013
5.00E+09	3.5	0.0115	5.00E+09	3,44	0.01	5.00E+09	3,56	0.013
1.00E+10	3.4	0.0125	1.00E+10	3.34	0.011	1.00E+10	3,46	0.014
2.00E+10	3.2	0.014	2.00E+10	3.14	0.0125	2.00E+10	3.26	0.0155

- Slide 4: Approved Loss Parameters
 - ImpFR4_LowSR Wide
 - High Tol. ImpFR4, w = 7, b = 14.59, t = 0.6, L = 1, SR = Low (20x0.6μm)
 - ImpFR4_LowSR –Narrow
 - High Tol. ImpFR4, w = 4, b = 9.13, t = 0.6, L = 1, SR = Low (20x0.6μm)
 - ImpFR4_HighSR Wide
 - High Tol. ImpFR4, w = 7, b = 14.59, t = 0.6, L = 1, SR = High (65x0.6μm)
 - ImpFR4_HighSR Narrow
 - High Tol. ImpFR4, w = 4, b = 9.13, t = 0.6, L = 1, SR = High (65x0.6μm)

(updated to v2.03, but unchanged) Cisco – SR Test Board

- Test boards are 16in length
- t, h, b, and w were
 taken from a cross section measurement
- Single-ended measurement shown (data for differential not delivered to Beth)
- Graphs shown to the left are of Black Oxide process (above shows the variations due to process)
- Test boards used in surface roughness study, published in S. Hinaga, M. Koledintseva, P. Anmula, J. Drewniak, "Effect of Conductor Surface Roughness upon Measured Loss and Extracted Values of PCB Laminate Material Dissipation Factor," PCB007. Published 2010.

(updated to v2.03, but unchanged)

Qlogic – e-mail of data given by Mike Dudek E-mail states

- 100 ohm differential traces
- Measurement of 6.9mil w includes the 2 launches (including SMA conn. and vias)
- w, t, and L were given
- h was not given... model was used to calculate what h should be to give 50 ohms at 5G
- No control on the surface roughness for all 3 measurements
- Only a dB/in was given, not an s-parameter

U		Nelco	
Material	Megtron 4	4000-13	Megtron 4
Geometry	45/7/45	45/7/45	6.9/8.6/6.9
Freq (GHz)		Loss dB/inct)
1	-0.173	-0.196049	-0.132662
6.5	-0.564	-0.68447	-0.52876
7	-0.609	-0.720855	-0.557981
12.89	-1.025	-1.071918	-1.002522
14	-1.190	-1.213834	-1.135518

Back	plane/Trace Mater	ial	
Length I	(inch)	9	
Trace Wid	lth (mil)	4.5	
Cu Thickne	Cu Thickness (mil)		
Diel. Thickr	10.34		
Freq	Dk	Df	
1.00E+08	3.59	0.005	
1.00E+09	3.57	0.005	
2.00E+09	3.56	0.006	
5.00E+09	3.54	0.0065	
1.00E+10	3.53	0.007	
2.00E+10	3.5	0.008	
High Roughness	65	6.0E-07	

Nelco 4000-13

Backplane/Trace Material						
Length I	9					
Trace Wid	lth (mil)	4.5				
Cu Thickne	ess (mil)	0.65				
Diel. Thickr	10.6					
Freq	Dk	Df				
1.00E+08	3.7	0.0075				
1.00E+09	3.7	0.0075				
2.00E+09	3.68	0.008				
5.00E+09	3.65	0.0085				
1.00E+10	3.6	0.009				
2.00E+10	2.00E+10 3.55					
High Roughness	65	6.0E-07				

Material Dk/Df values determined by datasheet: Numbers that are bolded were given in datasheet... other frequencies were filled in.

(updated to v2.03, but unchanged)

Qlogic – e-mail of data given by Mike Dudek

- "Measured" data is drawn given 5 freq points of dB/in, NOT a sparameter
- Measureme nt of 6.9mil w includes the 2 launches (including SMA conn. and vias)
- Note that h was not given

Tool Validation (using v2.02, but should not change in v2.03)

Marvell – summary of validation by Liav Ben Artsi

Loosely Coupled Traces:

•Measurements of narrow traces of both HVLP and VLP had a good correlation to the calculated value (≤0.13dB)

•Measurements indicate that "normal" surface roughness loss may have high variance in relation to calculated loss (up to 0.3dB)

Tightly Coupled Traces:

•Measurements of narrow traces of meg6 and Nelco13SI with various surface roughness levels had a very good correlation (≤0.05dB) to the values suggested on slide 9 (which takes into account the

tolerance).

Material /	Trace width	Measured loss	Calculated loss	Difference to				
construction	(before etching)			calculated loss				
Megtron6 HVLP	5	1.04dB	0.8dB (slide 9 indicate	0.204dB				
(tightly coupled)			1.01dB) = 0.911 for ∨LP					
Material / constructionTrace width (before etching)Measured loss (before etching)Calculated loss (calculated loss)Megtron6 HVLP51.04dB0.8dB (slide 9 indicate 1.01dB) - 0.911 for VLP0.204dBKightly coupled)51.04dB1.01dB) - 0.911 for VLP0.204dBMegtron6 Normal (tightly coupled)51.54dB1.255dB (slide 9 indicate 1.5924)0.19dBMegtron6 Normal (tightly coupled)51.54dB1.255dB (slide 9 indicate 1.5924)0.19dBMegtron6 Normal (tightly coupled)51.28dB1.297dB0.017dBNelco-13SI Medium surface roughness (tightly coupled)51.28dB1.297dB0.017dBHQ FR4 - HVLP - Two width - LooselyCan't share due to vendor Confidential noteCalculated loss is higher by ~0.13dBhigher by ~0.13dBHQ FR4 - VLP - Two width - LooselyCan't share due to vendor Confidential noteCalculated loss is higher by ~0.13dBKalculated loss is higher by ~0.13dB								
Megtron6 Normal	5	1.54dB	1.255dB (slide 9 indicate	0.19dB				
(tightly coupled)			1.5924)					
Α	laterial / Trace width (before etching) Measured loss Calculated loss Difference to calculated loss legtron6 HVLP 5 1.04dB 0.8dB (slide 9 indicate 0.204dB 0.204dB 1.01dB) – 0.911 for VLP Measured loss ightly coupled) Difference from proposed parameter legtron6 Normal 5 1.54dB 1.255dB (slide 9 indicate 0.19dB 1.5924) Difference from proposed parameter elco-13SI Medium 5 1.28dB 1.297dB 0.017dB 0.0017dB 0.017dB 0.0017dB 0.017dB 0.0017dB 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000							
Nelco-13SI Medium	5	1.28dB	1.297dB	0.017dB				
surface roughness								
(tightly coupled)								
HQ FR4 – HVLP – Two		Can't share due to		Calculated loss is				
width - Loosely		vendor Confidential		higher by ~0.12dB				
coupled		note						
HQ FR4 – VLP – Two		Can't share due to		Calculated loss is				
width - Loosely		vendor Confidential		higher by ~0.13dB				
coupled		note						
HQ FR4 – Normal –		Can't share due to		Calculated loss is				
Two width - Loosely		vendor Confidential		higher by ~0.3				
coupled		note						

Tool Validation (using v2.02, but would not change in v2.03)

Intel- comparison to validated 3D solver (Rich Mellitz)

setting	value	units	
PCB: trace width sigma	0.2625	mils, 1 std dev	
PCB: trace height sigma	0.03	mils, 1 std dev	
PCB: dielectric height sigma	0.11875	mils, 1 std dev	
PCB: er sigma	0.05	1 std dev	
PCB: Er\tanD reference frequency	1	GHz	r an
PKG: trace width sigma	1.67	um, 1 std dev	
PKG: trace height sigma	1.67	um, 1 std dev	
PKG: dielectric height sigma	2	um, 1 std dev	
PKG: er sigma	0.07	1 std dev	
PKG: Er\tanD reference frequency	5	GHz	
Impedance measure frequency	1	GHz	
dB/inch loss measure frequency	5	GHz	
dB/inch reference impedance	lineZtarget	ohms	
db/inch calculation (extra imap run)	disable		
IMAP accuracy	default		
Output filetype	sparam		-
Solver IMAP/XFX	IMAP		/
Model frequency steps linear/log	lin		
Model frequency steps linear/log	lin		
Frequency Begin	1.00E+08	Hz	Ľ
Frequency End	20	GHz	
Number of Points	2001		
min Smask on top of trace when tt>Sm	0.3		

AlgebraicTool v2.02

Nominal Megtron 6						
Freq	Dk	Df				
1.00E+08	3.67	0.0039				
1.00E+09	3.65	0.004				
2.00E+09	3,59	0.0043				
5.00E+09	3,576	0.0049				
1.00E+10	3.3494	0.0055				
2.00E+10	3	0.0065				

Intel Validated Field

freq	dk		df								
1.00E+08		3.6715	0.00398								
1.00E+09		3.6499	0.00400								
2.00E+09		3.6436	0.00401								
5.00E+09		3.6351	0.00402								
1.00E+10		3.6286	0.00402								
2.00E+10		3.6222	0.00403								

Inputted Djordjevic model values into Algebraic Tool

Notic frequ Mode Using Field	te 1Ghz is th lency for the el g Intel Valida Solver to ou	e r e D ate	eferei jordje d ut	nce vic					
.s2n									
	Predicted Impedan	ce	50.29			Т	(height) = t	trace height ANE) copper plating
	i redicted impeddi		50.25			+/*			10
						Lus ↓			‡Sm
param	signal made		nominai			-1		S	
	signal mode		se		Solved 70	-	* w		
	number of conductors	•	51		51 10 ohme	-1	1 1		
	dielectric above	h2	7 37		disabled)error db/inch		^h		
	width	w	7				03		
	dielectric below	h1	7.37				*		
	trace thickness	t	0.6		COLVE				
	space (edge to edge)	s	7		SOLVE	-	12		
	space (pair to pair, edge)	d	7		00010	- I'	12		
	dielectric constant (er)	er	3.65			- !	1		
	loss tangent	tand	0.004					d	1
	stack up units		mils						
roughn	ess and filename					t	≥i ≱		
7	Roughness model	ver	3		Surface Roughness Key				aggressor
	Sphere Radius (um)		0.6		No roughness: ver 0	* w	→ -		·
	RMS peak width (um)	pw	9.4		Packages: ver 1 Hammerstand			1 01	
	RMS (hammerstad) (um)	srms	0.815		Package 0.32/0.35 for sl/us	h1			
	ref frequency	hz	1.00E+09		Board: ver 3 Hurray				
	Number of Spheres		65		sphere radius 0.5	*			
	solve this model tab/lcf	1	tab		RMS peak width 9.4				
	filename		Meg6_nomtol_	w7_b14.74_h	number spheres 64/79 for sl/us				
Solder	Solder Mask			use 50 spheres for stripline RTC					
	solder mask dielectric	er	3.8						
	solder mask loss tand	tand	0.025						
etch fa	rtor and conductivity								
ettilla	etch factor		0						
	conductivity	; (S/m	5.96E+07						

To match Algebraic 2.02 for high surface roughness (HSR) : sigma = 5.96e7, number of spheres = 65, sphere radius = 0.6

Caveat: Etch factor is set to 0.3 for Intel Validated Field Solver . For Algebraic tool, the etch factor is zero.

Tool Validation (using v2.02, but would not change in v2.03)

Intel- comparison to validated 3D solver (Rich Mellitz)

