Alignment Marker Lock State Machine for NRZ 100G-KR

IEEE P802.3bj, Minneapolis May 2012

Zhongfeng Wang, Broadcom Mark Gustlin, Xilinx

Supporters and Contributors

Jeff Slavick,

Roy Cideciyan

Hongtao Jiang

Avago Technology IBM Broadcom

Alignment Marker Block

- In 100G backplane and copper cable systems, after transcoding and data redistribution, we have groups of 5 consecutive Alignment Marker (AM) blocks on each physical lane. Each AM block has the format shown below.
- To check if a 64-b block is a AM block, we check M0, M1, M2, M4, M5, and M6 segments (totally 48 bits) for possible match.

	RS symbol index							
	0 1 2 3 4 5	6 7 8 9 10 11 12	2131415161718	1920212223242	5262728293031			
FECL<0>	AM0	AM4	AM8	AM12	AM16			
FECL<1>	AM1	AM5	AM9	AM13	AM17			
FECL<2>	AM2	АМб	AM10	AM14	AM18			
FECL<3>	AM3	AM7	AM11	AM15	AM19			

		A	lignment Ma	arker Forma	at		
MO	M1	M2	BIP3 CD3	M4	M5	Мб	BIP7 CD7

Overview of the Alignment Proposal

- On a per lane basis, lock to the first Alignment Marker (of the 5) by looking in parallel for a match (with an error tolerance) and once finding a match, look 4096 FEC blocks away for a 2nd match (for non EEE operation), if you find a match then you declare that lane in AM lock
- Once all 4 lanes are in AM lock, then you align the lanes and declare FEC lock. FEC lock is by definition known once you have AM lock and you deskew the 4 lanes.
- After FEC lock is declared, FEC unlock is declared once you see 3 FEC blocks in a row that have uncorrectable errors
 - Note that AM unlock is declared on all lanes once FEC unlock is declared

AM Block Matching Proposal

- From our analysis, block match with a tolerance of up to 3 4-b symbol errors achieves an optimal tradeoff between low false alignment probability and short worst-case lock time.
- To reduce computation complexity, we will only check block match for the first AM block in each group of 5 AM blocks.

Example Structure for Block Match

If the total number of non-matched symbols is greater than 3, we will report "unmatch" for the block, where BMU stands for Byte Match Unit.

Lock Scheme and Analysis

 If two leading AM blocks in 2 consecutive groups are matched by definition, we will enter the "AM Lock" state for that physical lane.

Mean time to AM lock: Tm=(1.5 + 1.5e-7) x delay between two AM groups

 False alignment probability: P(false align) ~1.0e-17 → mean time of 1.7e5 yrs.
Impact if false alignment occurs: very quick unlock due to FEC uncorrectable errors

 Worst case lock time: P(not lock in 6 group delays) < 1.0e-21
→ mean time of 1.7e9 years The worst scenario: ---v---x---v---x

FEC Status for Unlock Detection

Assume all 4 lanes are correctly aligned. Can we use the FEC lock status to declare unlock of the FEC and AMs?

- We need to be sure that the FEC decoding status will robustly indicate that we are out of lock quickly
 - At a BERout=1e-12, a FEC block is not decodable with probability of 2e-10 to 6e-10 depending on the assumed error propagation. Thus it is practically impossible to have 3 consecutive un-decodable FEC blocks when correctly aligned.
 - Therefore, it is robust to claim "unlock" when detecting 3 undecodable FEC blocks in a row

Use FEC Status for Unlock Detection (II)

If there's any false alignment, .e.g., offset by 1 bit or 1 symbol for one lane, it will lead to 100+ symbol errors with high probability. In this case, a false decoding may happen. But the probability of false decoding will be about 1.6e-6. A worst case (p < 6.5e-24) is given as follows:

where "Fd" denotes "false decoding of a FEC block", "Ud" stands for a undecodable FEC block.

In the above case, we take 15 FEC blocks of transmission time to enter "unlock" state when false aligned. This is more than 2 orders of magnitude shorter than using AM blocks to declare unlock.

AM/FEC Lock SM

Left figure shows lock SM for each lane, right hand figure shows SM for global (FEC) lock/unlock.

The next checking point refers to the 64-b block exactly 4096
FEC blocks away from the previously matched block.

Block Match in EEE Mode

In EEE mode, we will check block match with two AM blocks (1st and 5th) per AM group of 5 AM blocks (note: either match is counted). Thus we can reduce the worst-case lock time to 3 group delay while keeping the same false alignment probability. The delay between 2 consecutive groups of AM blocks in EEE mode may be as short as 2 FEC blocks (*i.e.*, 100ns).

EEE Mode State Machine

Summary

Alignment Marker match is defined with a tolerance of symbol errors to mitigate burst errors.

- An optimal tradeoff between low false alignment probability and short worst-case lock time can be obtained when using block match with tolerance of up to 3 4-b symbol errors.
- Using FEC decoder status for unlock detection can greatly speedup the process to enter "unlock" state when falsely aligned.