

Issues with sampling time and jitter in Annex 93A

Adam Healey IEEE P802.3bj Task Force May 2013

Part 1: Jitter (comment #157)

Treatment of jitter in COM Draft 2.0

LSI

- (amplitude error, V) = (timing error, UI) x (slope, V/UI)
- Estimate the slope to be the amplitude of the pulse response at time t_s
- Assume the slope around pre- and post-cursor samples is negligible

NOTE: In Draft 2.0, the pulse response amplitude includes the factor 1/(L - 1). This presentation assumes that this factor is removed per comment #156.

Testing the assumptions

- The slope around t_s is not necessarily the signal amplitude
- The slope around pre- and post-cursor samples is not negligible
- Predictions of the impact of jitter may not be accurate

LSI

IEEE P802.3bj Task Force, May 2013

5

Calculate the slope of the pulse response

$$h_J(t) = \frac{d}{dt} h^{(0)}(t)$$

 $h_{1}(n) - h_{2}(t + nT_{1})$

Sample the slope at 1 UI intervals around t_s

$$n_j(n) = n_j(c_s + n_b)$$

Estimate the variance of the amplitude error due to timing error

$$\sigma_J^2 = \left(A_{DD}^2 + \sigma_{RJ}^2\right)\sigma_X^2 \sum_n h_J^2(n)$$

Similar to calculation of σ_{ISI}^2 , see Equation (93A-25)

May be estimated using the

expression on slide 4.

In Equation (93A-27) replace $(A_s \sigma_{RI})^2$ term in denominator with σ_I^2

In the spirit of comment #74

A better, but still simple, estimate

A better, but still simple, estimate (continued)

LSI

• Modify Equation (93A-32) as follows, replacing $(A_s \sigma_{RJ})^2$ term

$$\sigma_G^2 = \sigma_{RJ}^2 \sigma_X^2 \sum_n h_J^2(n) + \sigma_r^2$$

Comment #73 also proposes to modify the definition of σ_r .

Similarly for Equation (93A-42)

$$\sigma_G^2 = \sigma_{RJ}^2 \sigma_X^2 \sum_n h_J^2(n) + \sigma_r^2 + \sigma_{ne}^2$$

• Compute p_{DD} per 93A.1.7.1 using $h(n) = A_{DD}h_J(n)$

Current method versus proposal

- Measured data based on time-step simulation of 100,000 random symbols
- Proposal in better agreement with empirical distribution
- Proposal is still an estimate more terms are required to correctly model larger time offsets

Impact on COM

- Evaluate proposal with an implementation of IEEE P802.3bj/D2.0 Annex 93A
- Include the changes proposed by comments #155, #156, #80, #74, #73
- #73 implemented as two-sided noise spectral density $N_0/2$ at the input to the receiver noise filter ($N_0/2 = 26 \text{ nV}^2/\text{Hz}$)
- The amplitude step Δy is set to 0.01 mV

IBM Experimental Backplane Test Fixture: 35 dB Loss Channel, 100GBASE-KR4

- Proposed estimate of the error variance influences equalizer configuration
- Proposed estimate of the error distribution influences the COM value

LSI

Summary of results: 100GBASE-KR4

IBM Experimental Backplane Test Fixture

Channel	Model	c (-1)	c(+1)	g _{DC} (dB)	FOM (dB)	A _s (mV)	A _n (mV)	COM (dB)	∆ (dB)
25 dB Loss Channel	Draft 2.0	-0.14	0.00	-11	18.05	29.088	13.888	6.42	-1.14
	Proposal	-0.18	0.00	-6	16.86	34.951	19.031	5.28	
30 dB Loss Channel	Draft 2.0	-0.14	-0.06	-12	18.48	20.068	8.897	7.07	-1.53
	Proposal	-0.18	0.00	-10	16.85	23.514	12.436	5.53	
35 dB Loss Channel	Draft 2.0	-0.14	-0.18	-12	16.53	10.567	6.089	4.79	-0.92
	Proposal	-0.18	-0.08	-12	15.46	12.648	8.098	3.87	

Measured ATCA Backplane Channels: Longest Link, 100GBASE-KP4

- A_{DD} and σ_{RI} significantly reduced relative to 100GBASE-KR4
- In these examples, COM is dominated by residual inter-symbol interference
- Impact of the proposal is muted by other impairments

✓ ∥ >
LSI

Summary of results: 100GBASE-KP4

Δ

0.18

0.17

0.14

Channel Model FOM COM c(-1)*c*(+1) A_{s} A_n g_{DC} (dB) (mV) (mV) (**dB**) (dB) (**dB**) Draft 2.0 -0.100.00 -4 15.63 26.389 14.274 5.34 Shortest Link -0.100.00 16.01 26.389 13.975 5.52 Proposal -4 Draft 2.0 -0.10-0.12-3 13.13 21.433 15.002 3.10 Middle Link 13.35 3.27 Proposal -0.10-0.12-3 21.433 14.704 Draft 2.0 -0.120.00 -6 12.65 18.271 14.098 2.25 Longest Link 0.00 Proposal -0.12-6 12.84 18.271 13.875 2.39

Measured ATCA Backplane Channels

Summary and recommendation

₽ ₽ LSI

- The treatment of jitter in COM can and should be improved
- Proposed algorithm that leverages concepts already established in Annex 93A
- Proposed algorithm incurs little computational overhead
- Comparisons indicate the current algorithm underestimates the impact of jitter by as much as 1.5 dB for the cases studied
- Recommend the changes described on slides 5 and 6

Part 2: Sampling time (comment #158)

Definition of the sampling time

 It is assumed the definition of t_s is based on the Mueller and Muller timing error detector (Type A) [3]

$$h^{(0)}(t_s - T_b) = h^{(0)}(t_s + T_b)$$

• An unconstrained decision feedback equalizer will always force $h^{(0)}(t_s + T_b) = 0$

$$h^{(0)}(t_s - T_b) = 0 = h^{(0)}(t_z)$$

 But the equalizer is constrained and, in the future, specifications may choose to use COM without a decision feedback equalizer

Proposed definition of the sampling time

LSI

• Define t_s to be the time that satisfies the following equation $(N_b = 0)$

$$h^{(0)}(t_s - T_b) = h^{(0)}(t_s + T_b)$$

• When $N_b > 0$, take the coefficient magnitude constraint $b_{max}(n)$ into account

$$h^{(0)}(t_s - T_b) = h^{(0)}(t_s + T_b) - h^{(0)}(t_s)b(1)$$

$$b(1) = \begin{cases} -b_{max}(1) & h^{(0)}(t_s + T_b)/h^{(0)}(t_s) < -b_{max}(1) \\ b_{max}(1) & h^{(0)}(t_s + T_b)/h^{(0)}(t_s) > b_{max}(1) \\ h^{(0)}(t_s + T_b)/h^{(0)}(t_s) & otherwise \end{cases}$$

Summary and recommendations

- A revised definition of the sampling time is proposed
- Proposed definition provides the correct result when the decision feedback equalizer is constrained or absent
- Computation time comparable to current sampling time definition
- Low impact when constraints are lax, e.g. 100GBASE-KR4 and as proposed for 100GBASE-KP4 by comment #80
- Recommend changes described on slide 16

References

- LSI
- [1] Meier, Wolfgang and Armin Jacht (Emerson Network Power), "Measured ATCA Backplane Channels", October 2011. <u>http://www.ieee802.org/3/100GCU/public/ChannelData/emerson 11 0928/meier 02 1011.zip</u> <u>http://www.ieee802.org/3/100GCU/public/ChannelData/emerson 11 0928/meier 01 1011.pdf</u>
- [2] Patel, Pravin (IBM), "Experimental Backplane Test Fixture", May 2011. http://www.ieee802.org/3/100GCU/public/ChannelData/IBM 11 0518/patel 01 0511.zip http://www.ieee802.org/3/100GCU/public/ChannelData/IBM 11 0518/patel 02 0511.pdf
- [3] Mueller, Kurt H. and Markus Muller, "Timing Recovery in Digital Synchronous Data Receivers", IEEE Transactions on Communications, Vol. COM-24, No. 5, May 1976.

Back-up slides

Clarification of assumptions

• Waveform samples in the absence of jitter are given by ...

$$y_0[m] = y(t_s + mT_b) = \sum_n x_n h (t_s + (m - n)T_b)$$

- ... where x_n is the n^{th} signal level transmitted
- This proposal assumes that transmitted jitter may be translated into jitter of the receiver's sampling clock

$$y[m] = y\left(t_s + \epsilon_m^{(RX)} + mT_b\right) = \sum_n x_n h\left(t_s + \epsilon_m^{(RX)} + (m-n)T_b\right)$$

• The amplitude error due to jitter is then given by ...

$$y[m] - y_0[m] = \sum_n x_n \left[h \left(t_s + \epsilon_m^{(RX)} + (m-n)T_b \right) - h \left(t_s + (m-n)T_b \right) \right]$$
$$y[m] - y_0[m] \cong \epsilon_m^{(RX)} \sum_n x_n h_J \left(t_s + (m-n)T_b \right)$$

SI

A better model

$$y[m] = \sum_{n} [x_n - x_{n-1}] u_h (t_s + \epsilon_n^{(TX)} + (m-n)T_b)$$

• ... where $u_h(t) = \sum_{i=0}^{\infty} h(t - iT_b)$ is the channel step response

• The amplitude error due to jitter is then given by ...

$$y[m] - y_0[m] = \sum_n [x_n - x_{n-1}] \left[u_h \left(t_s + \epsilon_n^{(TX)} + (m-n)T_b \right) - u_h \left(t_s + (m-n)T_b \right) \right]$$
$$y[m] - y_0[m] \cong \sum_n [x_n - x_{n-1}] \epsilon_n^{(TX)} \delta_h \left(t_s + (m-n)T_b \right)$$

- ... where $\delta_h(t) = \sum_{i=0}^{\infty} h_j(t iT_b)$ is the channel impulse (not pulse) response
- There is no closed form solution for the distribution of error amplitudes using this model

LSI

Model comparison

- Measured data based on time-step simulation of 100,000 random symbols
- Deterministic jitter for time-step simulation is sinusoidal with amplitude A_{DD} and period $500T_b$
- Proposal makes simplifying assumption and is not a precise representation
- But, it is less optimistic than the current treatment

Additional references

- ¢∥∕ ¢∥∕> LSI
- [4] Oh, Kyung Suk (Dan) et al., "Accurate System Voltage and Timing Margin Simulation in High-Speed I/O System Designs", IEEE Transactions on Advanced Packaging, Vol. 31, No. 4, November 2008.