A Preliminary Proposal for PAM-4 TX Specification

for IEEE 802.3
100Gbps over backplane and copper cable task force
Sept. 12, 2011

Will Bliss, Broadcom Corp.
Kent Lusted, Intel Corp.
Vasu Parthasarathy, Broadcom Corp.

Supporter: Matt Brown, Applied Micro
Motivation and Proposal

• Address concerns from some participants that “PAM-4 is too difficult to test and qualify”
• Leverage all the TX tests from 10GBASE-KR
 • NRZ is a proper subset of PAM-4, so all NRZ tests can be reused
 • Tj, Rj, and Dj tests using PRBS9 (or PRBS31)
 • TX De-Emphasis ratios using SQUARE8
 • DCD, Peak Amplitude, and Signaling Rate using SQUARE1
• Add a single new test waveform for PAM-4
 • Requires one extra scope capture and post-processing
Scaling of 10GBASE-KR TX Specifications

- Baud Rate Scaling by $10 / 12.5 = 0.8$ of 10GBASE-KR
 - Rise Times scaled down to 19 – 38 psec
 - May want to reduce by any FEC overclocking to track actual Baud Rate (small effect)
- Bit Rate Scaling by $10/25 = 0.4$ of 10GBASE-KR
 - R_j (Random Jitter) spec was 0.15 UI ‘worst case’ (prob. 1e-12) for NRZ
 - Change to 0.15 of ‘bit Period’ (not Baud Period)
 - 0.075 UI for the new PAM-4 ‘UI’, so same actual jitter spec in psec as an equal data rate NRZ system
 - Derivation to be given in presentation “Eye diagrams for PAM-4 and NRZ”
 - D_j and T_j scale (similar to R_j) with bit rate, so 0.4
 - Same physical D_j and T_j in psec as NRZ at the same user rate
 - D_j and T_j scale (similar to R_j) with bit rate
 - Equal asymmetry in psec as NRZ at 25Gbps
A Proposed TX Stairstep Test Waveform for PAM-4

- PAM-4 test waveform is period 80T with stair steps up, stair steps down, and full swing transitions
- Each transmitted level is of duration 8 Baud periods
- Each transmitted level is measured after 3-7 Baud periods of settling
TX Specification for PAM-4 Levels

- The most important specification for PAM-4 is that the four levels (w/o TX de-emphasis) are approximately equally spaced, else low frequency Signal to Distortion Ratio (SDR) suffers
 - Define $V_{\text{LOW}} = (V_C - V_B)/2$
 - Define $V_{\text{HIGH}} = (V_D - V_A)/6$
 - Define $V_{\text{AVG}} = (V_{\text{HIGH}} + V_{\text{LOW}})/2$
 - Spec $|V_{\text{HIGH}} - V_D/3| < 0.06 V_{\text{AVG}}$
 - Spec $|V_{\text{HIGH}} + V_A/3| < 0.06 V_{\text{AVG}}$
 - Spec $|V_{\text{LOW}} - V_C| < 0.06 V_{\text{AVG}}$
 - Spec $|V_{\text{LOW}} + V_B| < 0.06 V_{\text{AVG}}$
 - V_{AVG} is the ~amount of noise voltage at the slicer that will cause an error

- More specifications can be tested with the single proposed waveform and capture
 - Symmetry between ‘up’ and ‘down’ steps
 - Rise and fall times
 - Duty cycle
 - Symmetry between steps of magnitude 2 and steps of magnitude 6
 - Rise and fall times the same
Disclaimer; this is a Preliminary Proposal

- Final specification tolerances need to be decided in the context of an overall SNR ‘implementation loss’ budget (which hasn’t been discussed yet)
- Specifications and tests are best targeted at known and anticipated circuits problems (which haven’t been discussed yet)
- This proposal isn’t meant to preclude any additional functional tests, such as an ‘overall wideband test’
 - E.g., Linearity fitting to a longer and random-like pattern
 - Such pass-fail tests can be very helpful, but frequently they don’t help circuit designers understand requirements nor help them discover root causes of any failures
Summary

• A scaling of the 10GBASE-KR specifications for Rise time, Rj, Dj, Tj, and DCD was presented
• A proposal to add one test waveform and capture for PAM-4 was presented
 • A proposed set of specifications for PAM-4 accuracy was presented