Measurements and Simulation Results in Support of IEEE 802.3bj Objective

Jitendra Mohan, National Semiconductor Corporation

Pravin Patel, IBM

Zhiping Yang, Cisco

Peerouz Amleshi, Mark Bugg, Molex

Sep 2011, IEEE 802.3bj Meeting, Chicago

Agenda

Measurement setup

Cable Results

- Measured: 3m, 5m

Backplane Results

– Measured: 0.6m

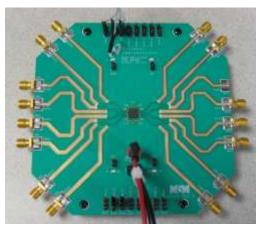
– Simulated: 1m

Proposal for longer backplane channels

Summary


Supporters

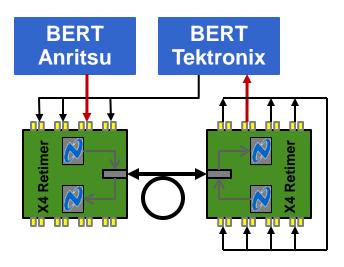
- lain Robertson, TI
- Tom Palkert, Xilinx
- Scott Kipp, Brocade
- Myles Kimmitt, Emulex
- Mike Dudek, Qlogic

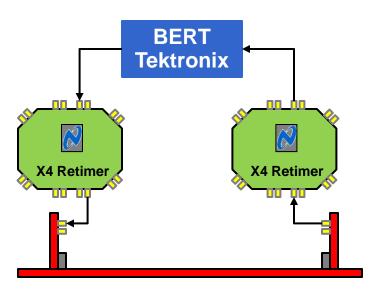


Measurement Setup Details

- 4-Channels
- NRZ Encoding
- CTLE front end
- LC-VCO based CDR
- DE Driver

NSC Retimer Eval Board


Molex zQSFP+ Eval Board

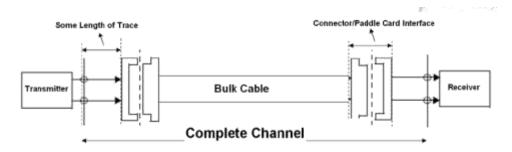

Measurement Setup Details

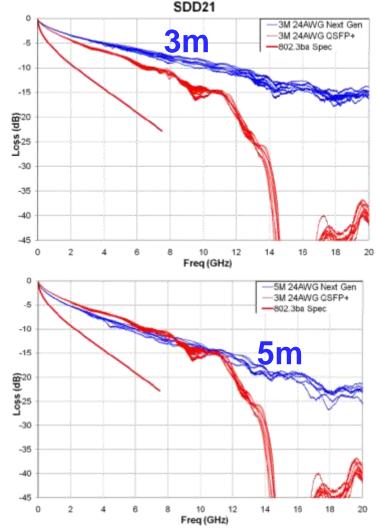
Cable Setup

- Integrated board
 - Nelco 4000-13Si, 2.5" stripline
 - zQSFP+ connectors
 - 2x NSC Retimers
 - On-board AC coupling
- Molex cables: 3m, 5m, 24AWG
- 2nd BERT for asynchronous Xtalk

Backplane Setup

- 2x NSC Evaluation boards
 - Rogers, 3" microstrip
- Molex Backplane
 - Impact connectors, Meg-6
 - Daughter cards, Meg-6
- External DC blocks, SMA cables
- No Xtalk (only one BERT available)

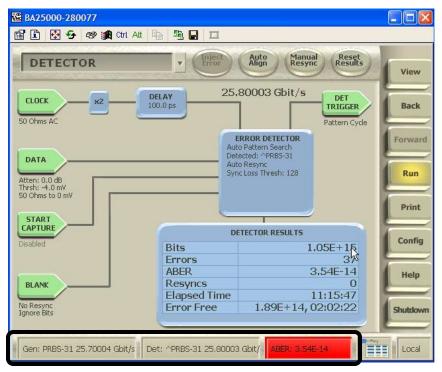

Cable Results

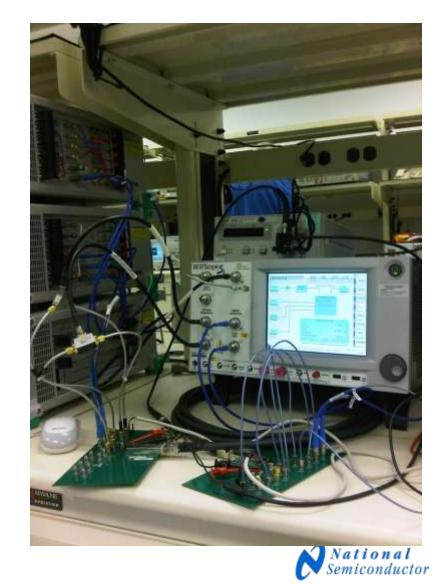


Measurement results – Molex cables

- Channel Characterstics
 - From <u>bugg_010111.pdf</u>
 - 24AWG
- Cable IL: 3m 15dB; 5m 17dB
- Host Board IL: ~4dB
- Total IL: 3m ~22dB; 5m ~24dB
- Channels independently analyzed by <u>Intel</u> (pg 21, 22)

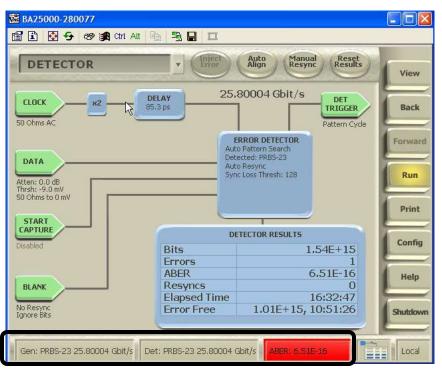
- Some Length of Trace:
 - 4.7dB will be allotted for each side
- Connector/Paddle Card Interface (including Termination) and Bulk Cable
 - 3M 24AWG: ~ 14.82dB @ 12.89 GHz
 - 5M 24AWG: ~ 17dB @ 12.89 GHz
- Complete Channel using 3 Meters =
 - 14.82 dB (from above) + 2 x 4.7 (Trace) = 24.22 dB
- Complete Channel using 5 Meters =
 - 17 dB (from above) + 2 x 4.7 (Trace) = 26.4 dB



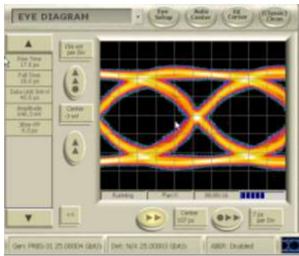


Measurement Results – 3m Molex Cable

- BER < 1e-13
 - PRBS-31, 25.8Gbps
- Asynchronous crosstalk
 - 7 aggressors, 1 victim







Measurement Results – 5m Molex Cable

- BER < 1e-15
- No crosstalk
- Performance limited by max EQ

Backplane Results

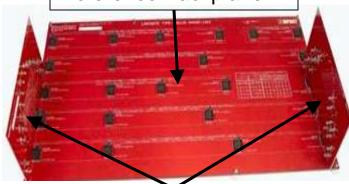
Measurement Results - Molex Backplane

Backplane Construction

Total channel length: 0.6m

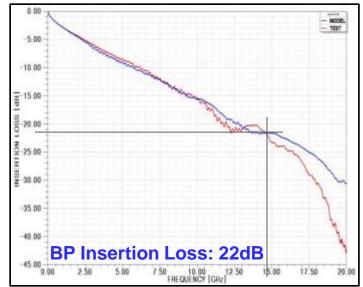
PCB Material:

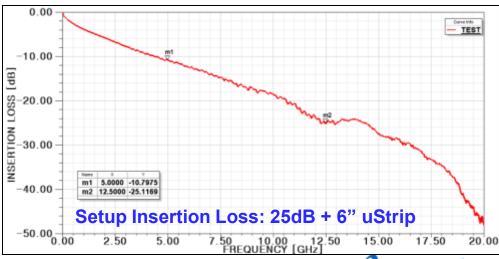
DC: Megtron 6 (VLP Copper)BP: Megtron 6 (HVLP Copper)


Trace width/spacing/width:

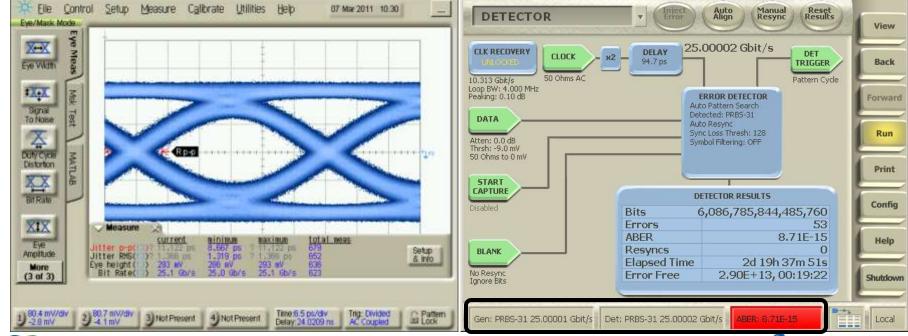
DC: 5.7/9.3/5.7 mils

BP: 7/9/7 mils


15mil via stubs on BP/DC


Molex Impact[™] Reference Backplane

Molex Impact[™] Daughter Card

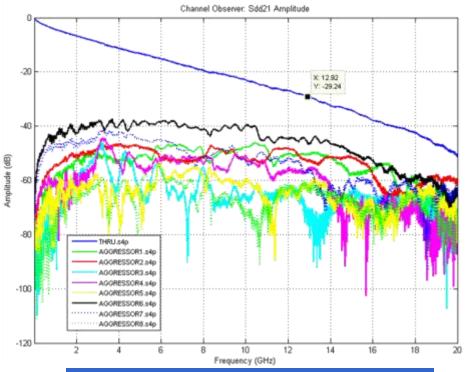


Measurement Results - Molex Backplane

- BER < 1e-14
- No crosstalk
- Performance limited by measurement setup, max EQ

System Simulations

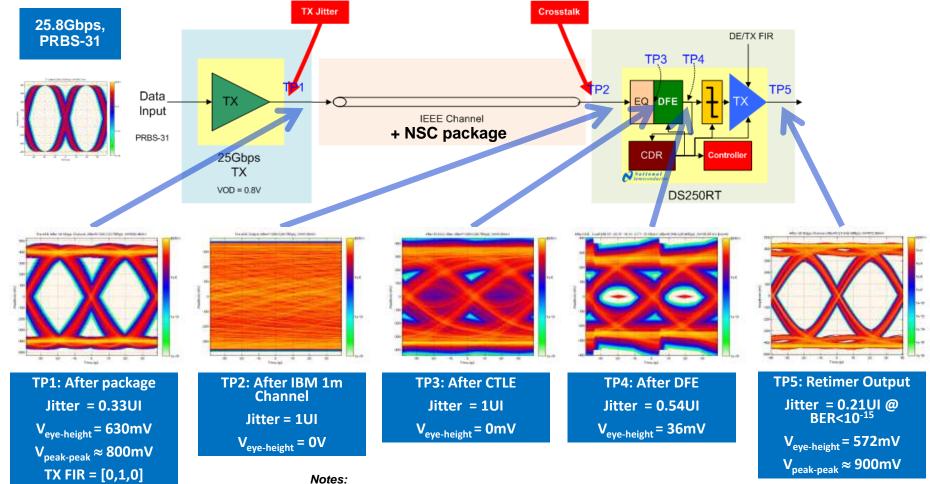
- Matlab based SI simulation tool
 - Correlated with lab measurements
 - Time domain analysis for deterministic effects
 - Overlay statistical analysis for random effects
 - S-parameter channel model including crosstalk
 - 25% higher aggressor, asynchronous frequency, PRBS-23
 - Package model
 - Transmit model: 0.8Vpp; 3-tap FIR; 2.8ps DJ, 0.28UI TJ @ 1e-15



IBM 1m Channel Characteristics

(Sep'11 contribution by Pravin Patel)

IBM 1m Backplane Channel (Ref: patel_2_0911.pdf)


- Channel Characteristics Summary
 - Insertion Loss: -30dB @ 12.9GHz (No significant discontinuities)
 - Worst Crosstalk: -44dB @ 12.9GHz (#6 out of 8 crosstalk aggressors)

IBM 1m Channel Simulation Results

(Sep'11 contribution by Pravin Patel, patel_2_0911.pdf)

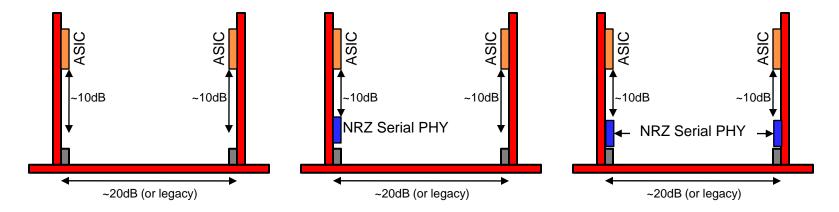
- IEEE 25Gbps TX Jitter: 2.8s DJ, 0.28UI TJ at BER < 10⁻¹⁵
- TX $V_{OD} = 0.8V$, Aggressor $V_{OD} = 1V$
- 8 Asynchronous Crosstalk Aggressors
- Simulation BER Setting: 10-15

Proposal for Longer Reach (>1m or legacy backplanes)

Background

- Several presenters have shown that it is possible to meet 1m objective with 'improved FR-4' and NRZ encoding
 - IBM, Altera, Vitesse, Intel, etc. at previous IEEE meetings
- Broadcom has shown that it maybe possible to meet 99% KR channels with PAM4
- In practice, only a very small fraction of KR channels with loss >30dB and poor ICR are targeted at 25Gbps
 - Most OEMs have used better materials and/or connectors
 - There is flexibility in redesigning line cards with better material
- An alternate scheme to handle such channels is presented

Long reach proposal


Break the longest links into two or three segments

Consider the following example for a 40dB loss channel that may prove difficult for NRZ

End to end loss: 40dB

Two segments: 30dB and 10dB

– Three segments: 10dB, 20dB and 10dB → theoretically >>40dB!

Benefits

- Extend the reach of NRZ beyond 40dB
- Retain the benefits of NRZ backward compatibility, forward integration etc.
- No \$\$ penalty for majority of 25G links that are much better than KR

Summary

Demonstrated feasibility to 100GCU objectives

- Silicon results from 25dB insertion loss channels
 - NRZ encoding, no FEC
 - 5m zQSFP+ cable with expected host traces
 - 0.6m Backplane + ~6dB setup losses
- Room for improvement
 - Performance limited by setups and receive capability
 - Significant improvement with DFE enabled
 - Incremental improvement from better measurement setup
 - Simulations show 1m over improved backplane easily achievable

Data Encoding

- NRZ sufficient for 1m BP, 5m cable IEEE 100GCU objective
- Proposal to enable longer reach over legacy backplanes using NRZ
- Single PHY for backplane and front port applications

Thank You!

