

Empowered by Innovation



# A scrambling method for 10G Extended EPON upstream

May, 2012 Akio. Tajima

Green Platform Research Labs, NEC Corporation

Outline

Introduction
Transmission Line coding
Redundant Scrambler
Numerical simulation results

Summary





### Introduction

Extended EPON targets are;

- 1G-EPON with split ratio of >1:64 at a distance of > 20 km;
- 10G-EPON with split ratio of > 1:64 at a distance of > 20 km;
- 10E-PON with high split ratio and short distance will be required
  - Subscribers in multiple dwelling units (MDUs)
  - Split ratio greater than 100 may be required.
  - Transmission bandwidth is shared by the users,

Enhanced bandwidth efficiency is expected.

• e.g. > 70%

In order to enhance upstream bandwidth efficiency, burst overhead should be reduced.

- Fast response Reset-less Rx
- Balanced line coding
  - Smaller deflection of mark ratio than 64B66B
  - Reduced probability of long CID less than 66 bits





### Upstream bandwidth efficiency

| Burst Overhead                             | Split ratio |        |        |
|--------------------------------------------|-------------|--------|--------|
|                                            | 64          | 128    | 256    |
| 1200 ns (T <sub>rec settling</sub> 800 ns) | 89.0 %      | 78.1 % | 56.2 % |
| 600 ns (T <sub>rec settling</sub> 200 ns)  | 92.9 %      | 85.8 % | 71.5 % |





# Transmission line coding

#### Desired features of line coding

- Small deflection of mark ratio and reduced probability of long CID
- Small redundancy and small complexity
- Without error propagation in decoding.

|                                                                               | Scrambled<br>NRZ    | 64B66B              | 8B10B           | Redundant<br>Scrambling<br>(block length <i>n</i> ) |
|-------------------------------------------------------------------------------|---------------------|---------------------|-----------------|-----------------------------------------------------|
| Mark-ratio deflection                                                         | Large               | Large               | Small           | Small                                               |
| Rate increasing ratio                                                         | 1                   | 1.03125             | 1.25            | <i>n/(n</i> -1)<br>1.0158 for <i>n</i> = 64         |
| Prob. that CID of<br>large len. <i>L</i> occur in<br>a block of len. <i>n</i> | n•2•2 <sup>-L</sup> | n•2•2 <sup>-L</sup> | (Max. L<br>< 6) | <mark>(n•2•2<sup>-L</sup>)</mark> 2                 |

•8B10B code has excellent performance of mark ratio and CID, however, the rate increasing is as large as 1.25 and transmission efficiency degrades.

#### We proposed "New Redundant Scrambling"



### Redundant scrambling scheme



- 5. A redundant bit is placed in the head of a frame to indicate the selection.
- 6. At the Rx, the sequence is descrambled with the scrambler and header bits are discarded



# Advantage of the redundant scrambling (1) -CID length-

Verification through numerical simulation

- Block length = 64
- Scrambler (self-synch.):  $g(x) = x^{21} + x^{19} + 1$



IEEE802.3bk Extended EPON Task Force, Minneapolis



Verification through numerical simulation

Block length = 64

• Scrambler (self-synch.):  $g(x) = x^{21} + x^{19} + 1$ 

Distributions of deflective mark-rate frequency for consecutive L = 4 frames



Mark-ratio deflection is reduced to 1/1000 for +/-12% deflection

Page 8

IEEE802.3bk Extended EPON Task Force, Minneapolis Empowered by Innovation



# Summary

Redundant scrambling was proposed.

- Simple architecture, low redundancy
- Improvement in burst transmission performance was confirmed.
  - Reducing baseline deflection to 1/1000 with 3% redundancy.
  - BER characteristic was improved.
  - Scrambling function can be set as same as 64B66B

The redundant scrambler is an attractive candidate for 10G upstream line code to enhance bandwidth efficiency.

