

Suggestions rev 1 PAR & Criteria for Backplane Ethernet Study Group

Mike Lerer
mlerer@fpga.com
Consultant to Xilinx
Chairman OIF PLL
Chairman NPF Hardware WG

PAR Suggestions (1 of 4)

- Scope
 - Define Physical Layer Characteristics to extend Ethernet to Backplane Applications.
 - Environment
 - Greenfield Backplanes
 - Existing ATCA Backplane
 - Full Mesh, Star, and Dual Star Interconnect Topology
 - "Plug and Play" Interoperable Initialization Sequence for Links.

This is currently Missing from OIF CEI.

PAR Suggestions (2 of 4)

Scope

 Define Physical Layer Characteristics to extend Ethernet to Backplane Applications.

Speeds

The Backplane application needs 50 to 100% speedup

- 3.125 Gigabits per Lane
 1 or 4 Lanes
- 6.250 Gigabits per Lane
 1, 2, or 4 Lanes
- 10.3125 Gigabits per Lane 1 or 2 Lanes

PAR Suggestions (3 of 4)

- Scope
 - Define Physical Layer Characteristics to extend Ethernet to Backplane Applications.
 - Objectives
 - Minimize Power Dissipation
 - Control EMI

PAR Suggestions (4 of 4)

- Purpose
 - Extend 802.3 for use in internal system interconnect (Backplane) for several markets:
 - Telecom Equipment (PICMG ATCA)
 - Enterprise Computing

- Broad Market Potential
- Compatibility with IEEE Std 802.3
- Distinct Identity
- Technical Feasibility
- Economic Feasibility

- Broad Market Potential
 - Ethernet inside the box solutions already have a substantial market presence
 - PICMG Compact PCI 2.16
 - PICMG ATCA 3.1
 - Blade Servers
 - Forecast's indicate an increasing future market potential

Compatibility with IEEE Std 802.3

Absolutely

 The only intent should be to extend the electrical specifications to cover the backplane.

- Distinct Identity
 - Not in conflict with other work
 - Backplane is a unique environment
 - Substantially different from other 802.3 specs/ solutions

Technical Feasibility

- OIF CEI work has developed a methodology for Channel Compliance and both 6+ Gig and 11+ Gig signaling over copper backplane.
- UXPi Consortium committed to backplane signaling at speeds up to 11+ Gigabits/sec
- SerDes capable of 3.125 to 11+ Gigabit are currently available from many manufacturers
 - Xilinx has Virtex-II ProTM FPGA's
 - From 4 to 24 SerDes
 - Each Capable of 622Mbps to 3.125 Gigabits/sec
 - Xilinx has Virtex-II Pro XTM FPGA's
 - From 8 to 20 SerDes
 - Each Capable of 2.488 to 10.3125 Gigabits/sec
- Channel (Backplane and Connector's) capable of 11+ Gigabit are available from many manufacturers. (Further details in Brian Seemann presentation later)

- Economic Feasibility
 - Existing SerDes capable devices demonstrate reasonable costs and product viability.
 - The benefits of Ethernet Standardization almost inevitably lead to increased volume and multiple interoperable suppliers. This only accelerates the cost advantages.

