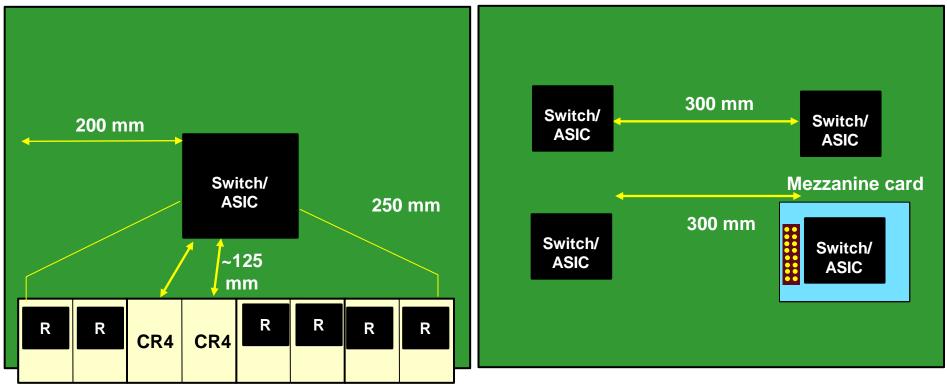
Option for CAUI-4 Chip to Chip

IEEE 802.3bm Task Force

Ali Ghiasi

Broadcom Corporation

Dec 13, 2012



- A CAUI-4 chip to chip link with 20 dB loss budget require DFE receiver and to avoid MTTFPA capability similar to 100Gbase-K4 is required
 - Based on the above limitation turning down some of the bj KR4 capability is the best option
 - MTTFPA was studied in great details in the bj group
 http://www.ieee802.org/3/bj/public/may12/cideciyan_01_0512.pdf
 - Non-symmetrical link based on host with greater capability to deliver the required signal at TP1a and relying on host DFE receiver also may not be an option
- Based on above limitations and the market need for higher than 10 dB loss budget
 - CAUI-4 chip to chip can be defined with loss budget up to 15 dB if certain channel parameters are met based on CTLE receiver
 - CAUI-4 chip to chip will be compatible with CAUI-4 chip to module

CAUI-4 Applications and Background

- http://www.ieee802.org/3/bj/public/jul12/ghiasi_02a_0712.pdf identified CAUI-4 applications as well as limitations
 - As result of MTTFPA, non-symmetrical interface is not an option unless module retiemr has FEC capability
 - Supporting 300 mm link require SerDes with bj KR4 capability
 - Is it really worth defining bj-KR4 link with 20 dB loss budget?

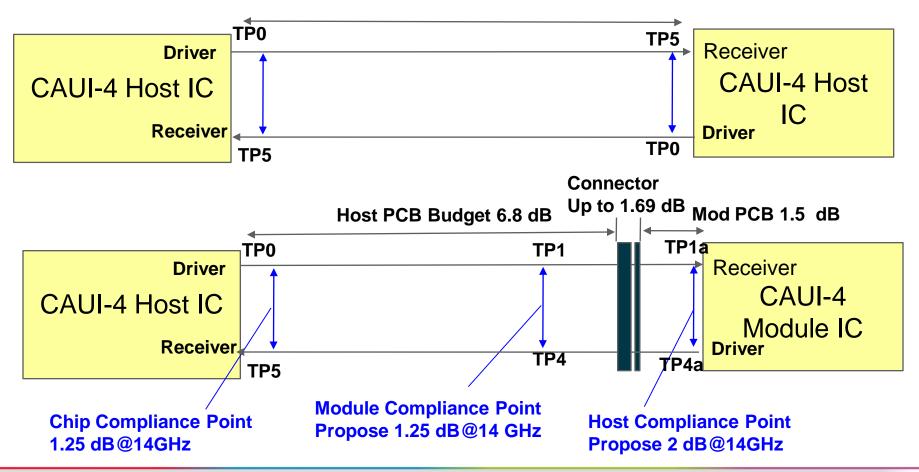
PCB Reach for Various Interfaces

PCB loss estimate assumptions and tools for calculation

- IEEE 803.bj spreadsheet <u>http://www.ieee802.org/3/bj/public/tools/DkDf_AlgebraicModel_v2.02a.xlsm</u> for N4000-13SI and Megtron-6 calculation
- Rogers Corp impedance calculator (free download but require registration) <u>https://www.rogerscorp.com/acm/technology/index.aspx</u> for FR4-6 and N4000-13
- Stripline ~ 50 Ω , trace width is 5 mils, and with ½ oz Cu
- Surface roughness med per IEEE spreadsheet or 2.8 um RMS
- FR4-6 DK=4.2 and DF=0.02, N4000-13 DK=3.6 and DF=0.014, N4000-13SI and Meg-6 per IEEE spreadsheet

Host Trace Length (in)	Total Loss (dB)	Host Loss(dB)	FR4-6	N4000-13	N4000-13SI	Megtron 6
Nominal PCB Loss/in at 5.15 GHz	N/A	N/A	1.00	0.79	0.56	0.43
Nominal PCB Loss/in at 12.89 GHz	N/A	N/A	2.00	1.60	1.25	0.92
CAUI Classic	10.5	6.81	6.8	8.6	12.2	15.8
PPI CL85A/86A with one connector & HCB#	6.5	4.37	4.4	5.5	7.8	10.2
CAUI-4 with one connector & HCB*	10.5	6.81	3.4	4.3	5.4	7.4
802.3bj CL92A with one connector & HCB *	10.5	6.81	3.4	4.3	5.4	7.4
CAUI-4 Chip to Chip	10	10	5.0	6.3	8.0	10.9
CAUI-4 Chip to Chip Engineered	15	15	7.5	9.4	12.0	16.3
cPPI-4 #	7	3.8	1.9	2.4	3.0	4.1
OIF 28G-MR	20	20	10.0	12.5	16.0	21.7

Assumes connector loss is 0.87 dB and HCB loss is 1.26 dB at 5.5 GHz.


* Assumes connector loss is 1.69 dB and HCB loss is 2.0 dB at 12.89 GHz.

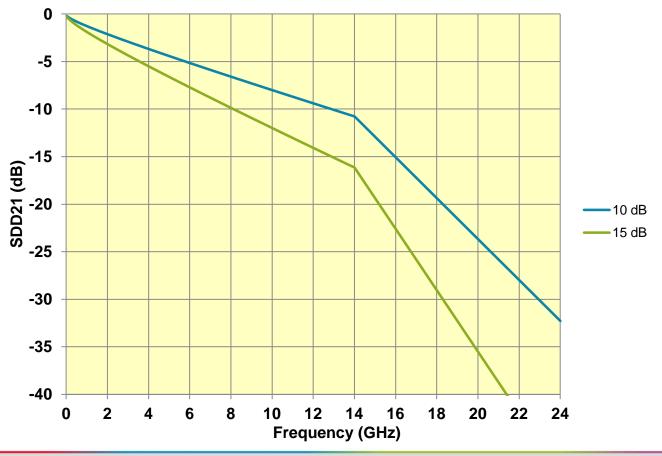
CAUI-4 Architecture and Reference Points

• The bm group need to further study CAUI-4 chip to chip application

Host PCB Budget 10-15 dB

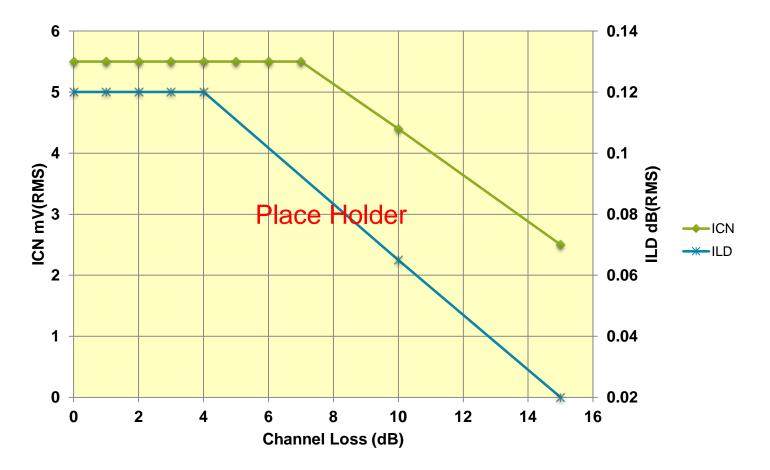
A. Ghiasi

Increasing CAUI-4 Chip to Chip Reach

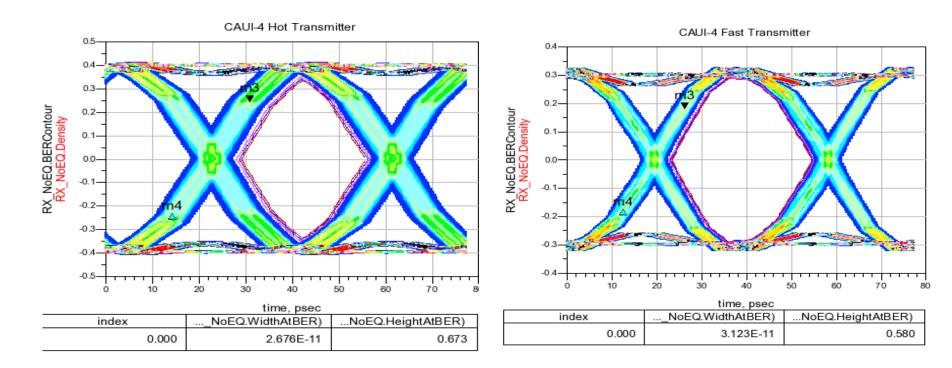


- Parameters that can increases CAUI-4 chip to chip reach
- Transmitter parameters and exact parameter that can be improved is dependent if this is large ASIC or PHY
 - Rise/fall time can be made as fast as the min rise/fall time
 - Jitter could lowered by ~0.1 UI
 - Amplitude min value can be increased up to 900 mV
 - Return loss no change
- Channel parameters
 - ILD template to trade off loss vs ILD
 - ICN template to trade off loss vs ICN
 - Loss a1 coefficient needs to be control and only an issue with fat traces on low loss material or super low loss PTFE material
 - Return loss no change
- Receiver parameters
 - CTLE gain 1-9 dB no change
 - Sensitivity to be studied if it needs to improved from 100 mV
 - Return loss no change

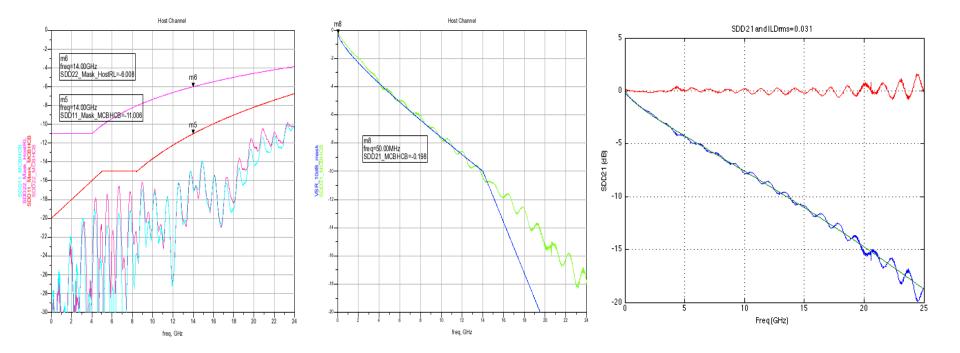
CAUI-4 Chip to Chip Informative Channel


- CAUI-4 chip to chip loss budget
 - Assuming all worst case parameters loss budget is 10 dB
 - By improving some of the transmitter parameters and operating the link where naturally has lower ICN/ILD the loss budget can be 15 dB

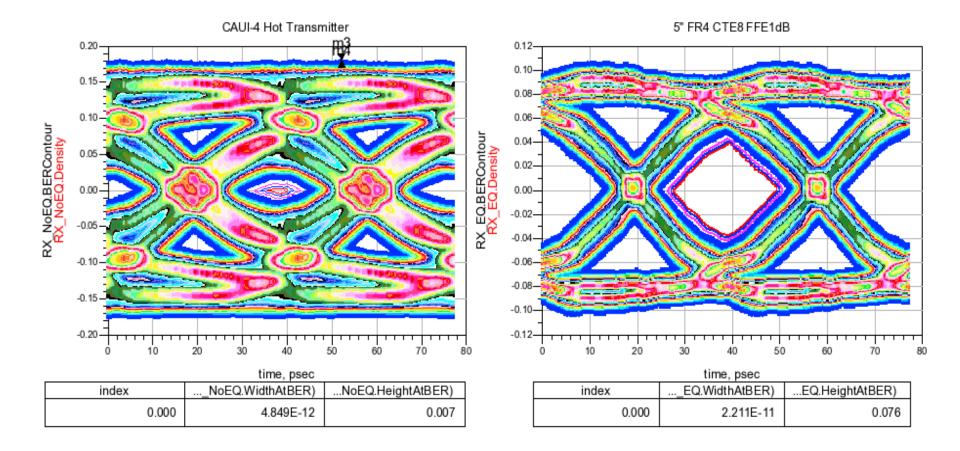
ILD and ICN Template


• ILD and ICN template are compatible at 10 dB with QSFP28/CFP2 type channels

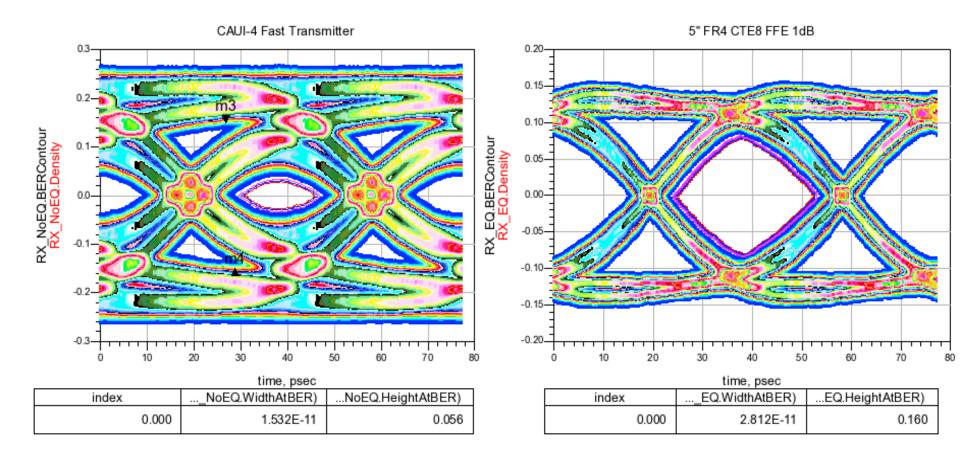
CAUI-4 Driver


- Define Hot driver with standard jitter but 800 mV output
- Define Fast-low jitter with 600 mV outout

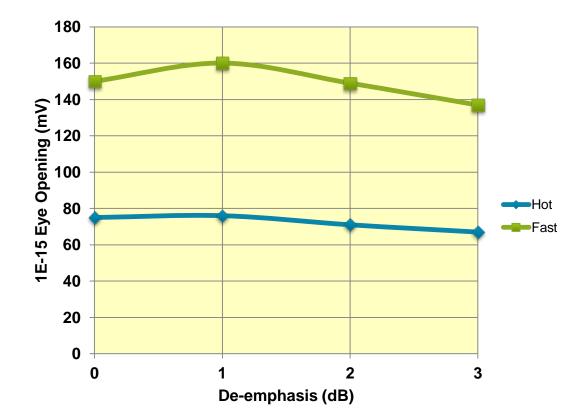
Channel Response


 5" FR4 370HR Channel with Quattro II connector including 2 deep back drilled via

5" 370HR Channel Hot VSR Transmitter


Hot transmitter with 800 mV of output drive
 With 8 dB CTLE and 1 dB de-emphasis and no Crosstalk

5" 370HR Channel Hot VSR Transmitter



Fast transmitter with 600 mV of output drive
 With 8 dB CTLE and 1 dB de-emphasis and no Crosstalk

• Fast driver has more than 2x the output eye opening than hot driver!

Thank You