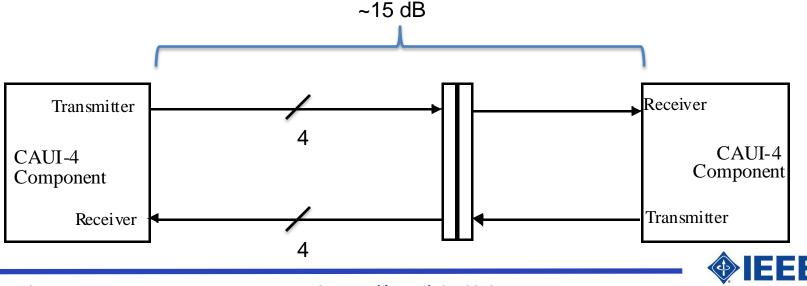
CAUI-4 Ad hoc

Ryan Latchman ryan.latchman@mindspeed.com


Agenda

- Patent Policy: The meeting is an official IEEE ad hoc. Please review the patent policy at the following site prior to the meeting. http://www.ieee802.org/3/patent.html
- Adhoc objective: chip-chip baseline for March
- Chip to chip draft baseline
 - Application space
 - Channel
 - Transmitter
 - Receiver
 - Areas of focus

Application

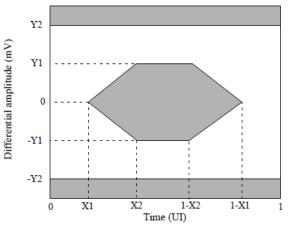
- Chip to chip interface
 - Low power, low latency, AC coupled interface between ICs running at 4 x 25.78Gb/s
 - No FEC, No-DFE/or limited DFE (e.g., 1-tap or analog), no transmitter training
 - ~15 dB loss target with 1 connector (connector is optional)
 - Consistent with 25cm reach target
 - See http://www.ieee802.org/3/bm/public/nov12/palkert_02_1112_optx.pdf, http://www.ieee802.org/3/bm/public/nov12/ghiasi_03_1112_optx.pdf
 - Higher loss channels also under analysis to enable longer links

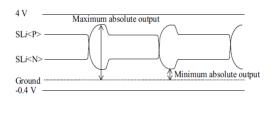
CAUI-4 chip to chip transmitter considerations

	KR4 (D1.4, TP0a)	MR	CAUI-4 chip to chip Potential
Signaling rate, per lane	25.78125+/-100ppm	19.6 – 28.05	25.78125+/-100ppm
Differential peak-to-peak output voltage (max) with Tx disabled	30mV		30mVppd
Common Mode Voltage (max)	1.9V	1.7V	1.9V
Common Mode Voltage (min)	0V	-0.1V	0V
Differential output return loss (min)	RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6 <f<=19 ghz<="" td=""><td>A0 = -12 fo = 50MHz f1 = 4.4189 f2 = 25.78125 Slope = 12dB/dec</td><td>RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6<f<=19 ghz<="" td=""></f<=19></td></f<=19>	A0 = -12 fo = 50MHz f1 = 4.4189 f2 = 25.78125 Slope = 12dB/dec	RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6 <f<=19 ghz<="" td=""></f<=19>
Common mode output returnloss (min)	RL(f)>= 6dB, 0.05<=f<=19GHz	6dB , f<10GHz 4dB, 10G <f<25.78125ghz< td=""><td>RL(f)>= 6dB, 0.05<=f<=19GHz</td></f<25.78125ghz<>	RL(f)>= 6dB, 0.05<=f<=19GHz
Common-mode AC output voltage (max,rms)	12mV	12mV	12mV
Amplitude peak-to-peak (max)	1200mV	1200mV	1200mV
Transition Time (20%-80%, min, no EQ)	8ps	8ps	8ps
Max output Jitter			See following slide
Output eye mask			See following slide
De-emphasis range			See following slide

CAUI-4 chip to chip transmitter leveraging: 802.3ba

- Define output jitter at TPOa
 - Effective random jitter: 0.15Ulpp
 - Even odd jitter: 0.035Ulpp
 - Total jitter: 0.28Ulpp
 - No (or default) de-emphasis
- Define X1, X2, Y1, Y2 (TBD right now)
 - X1 = 0.14
 - Y2 = 600mV
 - X2/Y1 chosen to allow for rise/fall vs. swing trade off
 - De-emphasis off
- De-emphasis range
 - Minimum de-emphasis: TBD
 - Maxim de-emphasis: TBD
 - Minimum VMA: TBD




Figure 83A-8—Transmitter eye mask

where

is the rise or fall time (whichever is larger) in ps

is de-emphasis value in dB

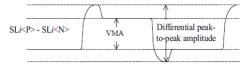


Figure 83A-5-Driver output voltage limits and definitions

CAUI-4 chip to chip transmitter leveraging: 802.3bj

Table 93-4-Summary of transmitter characteristics at TP0a

Parameter	Subclause reference	Value	Units	
Signaling rate	93.8.1.2	25.78125±100 ppm	GBd	
Differential peak-to-peak output voltage (max.) Transmitter disabled ^a Transmitter enabled	93.8.1.3	30 1200	mV mV	Table 93–5—Linear fit pulse and equalizer parameters Description Symbol Value Units
DC common-mode output voltage (max.)	93.8.1.3	1.9	v	Description Symbol Value Units Linear fit pulse length N _p 8 UI
DC common-mode output voltage (min.)	93.8.1.3	0	v	Linear fit pulse delay D_p 2 UI
AC common-mode output voltage (RMS, max.)	93.8.1.3	12	mV	Equalizer length N _w 8 UI Remove
Differential output return loss (min.)	93.8.1.4	Equation (93-2)	dB	Equalizer delay D_w 2 UI EQ
Common-mode output return loss (min.)	93.8.1.4	Equation (93-3)	dB	
Transition time (20-80%, min.), no equalization ^b	93.8.1.5	8	ps	
Output waveform Steady-state voltage v _f (max.) Steady-state voltage v _f (min.) Linear fit pulse peak (min.) Normalized RMS linear fit error (max.) Normalized coefficient step size (min.)	93.8.1.6	0.6 0.4 0.8 × Vy 0.037	v v v	
Normalized coefficient step size (max.) Pre-cursor full-scale range (min.) Post-cursor full-scale range (min.)		0.05 1.54 4	-	De-emphasis setting (s)
Far-end output noise (max.) Low insertion loss channel filigh insertion loss channel	93.8.1.7	2	mV mV	CAUI-4 chip –chip is relatively low loss
Output jitter (max.) Even-odd jitter Effective deterministic jitter excluding data dependent jitter Effective random jitter Total jitter excluding data dependent jitter	93.8.1.8	0.035 0.15 0.15 0.28	UI UI UI UI	

CAUI-4 chip to chip transmitter leveraging: OIF CEI SR

Table 10-6. Transmitter Electrical Output Specification.

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Baud Rate	T_Baud		19.90		28.05	Gsym/s
Output Differential Voltage	T_Vdiff	Emphasis off. See Note 4	800		1200	mVppd
Differential Resistance	T_Rd		80	100	120	Ω
Differential Termination Resistance Mismatch (see Table 1-2)	T_Rdm				10	%
Output Rise and Fall Time (20% to 80%)	T_tr, T_tf	Emphasis off. See Note 2	8			ps
Common Mode Noise	T_Ncm	Note 3			12	mVrms
Differential Output Return Loss	T_SDD22	See Section 10.3.1.3				dB
Common Mode Output Return Loss	T SCC22	Below 10 GHz			-6	dB
Common Mode Odlput Return Loss	1_50022	10 GHz to baud rate			-4	uв
Output Common Mode Voltage	T_Vcm	Load Type 0 See Note 1	-100		1700	mV

Table 10-11. Transmitter output waveform requirements

Parameter	Condition	Units	
Steady state output voltage, $2 \times v_f$	max	mVppd	1200
Steady state output voltage, $2 \times v_f$	min	mVppd	800
Linear fit pulse peak, <i>p_{max}</i>	min	-	0.80 x v _f
RMS error, σ_e	max	-	0.027 x v _f

NOTES: 1. Load Type 0 with min. T_Vdiff, AC-Coupling or floating load.

 The transmitter under test is preset such that C0 is its maximum value (C0_max) and all other coefficients are zero. The 20% and 80% values are of the steady state one and zero. The max value is limited by the linear fit pulse peak value in Table 10-11.

3. Measurement procedure is defined in Section 12.3.

4. T_Vdiff is two times the steady-state value V_f as defined in Section 10.3.1.6.2. The value is given as differential p-p voltage.

Table 10-7. Transmitter Output Jitter Specification

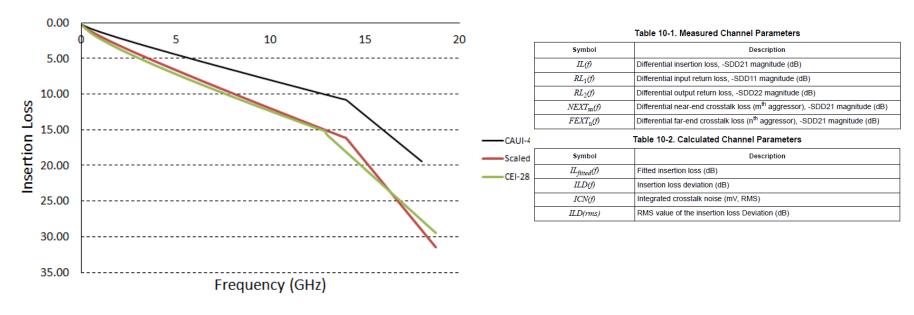
Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Uncorrelated Unbounded Gaussian Jitter	T_UUGJ				0.15	Ulpp
Uncorrelated Bounded High Probability Jitter	T_UBHPJ	Note 2			0.15	UI _{PP}
Duty Cycle Distortion (component of UBHPJ)	T_DCD	Note 3			0.035	Ulpp
Total Jitter	T_TJ	Note 1			0.28	Ulpp
NOTES:						

1. T_TJ includes all of the jitter components measured without any transmit equalization.

2. Measured with all possible values of transmitter equalization, excluding DDJ as defined in 12.1.1.

3. included in T_UBHPJ

Link budgets in this document assume adaptive TX FIR equalization that is part of the system management function. The specific implementation is outside the scope of this document.



CAUI-4 ad hoc Feb 21, 2013

Table 10-10. Linear fit pulse and equalizing filter parameters

Parameter	Value (UI)
Linear fit pulse length <i>T_N_p</i>	8
Linear fit pulse delay <i>T_D_p</i>	2
Equalizer length T_N _w	8
Equalizer delay <i>T_D_w</i>	2

CAUI-4 chip to chip channel leveraging: "Traditional" / OIF CEI SR

- Insertion Loss = 1.614 (0.075 + .537f^(0.5) + 0.566f)
 1.614 (-18+2f)
- 0.01<=f<14 14<=f<18.75

- Return loss = TBD
- ILD = TBD
- ICN = TBD
- ILDrms = TBD
- Or insertion loss increase depending on simulation results with Mike's channel (<u>http://www.ieee802.org/3/bm/public/jan13/li_01_0113_optx.pdf</u>)

CAUI-4 ad hoc Feb 21, 2013

CAUI-4 chip to chip channel leveraging: 802.3bj

Table 93-9-Channel operating margin parameters

Parameter	Symbol	Value	Units	
Signaling rate	ſь	25.78125	GBd	1
Maximum start frequency	f_{\min}	0.05	GHz	93.9.1 Channel operating margin
Maximum frequency step	41	0.01	GHz	The channel operating margin (COM) computed using the procedure in Annex 93A and the parameters
Device package model Single-ended device capacitance Transmission line length Single-ended package capacitance	C_d z_p C_p	2.5 × 10 ⁻⁴ 12 1.8 × 10 ⁻⁴	nF mm nF	Table 93-9 shall be greater than or equal to 34B. This minimum value allocates margin for practical limit tions on the receiver implementation as well as the largest step size allowed for transmitter equaliz coefficients.
Single-ended reference resistance	R ₀	50	Ω	
Single-ended termination resistance	R _d	55	Ω	TBD
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	A_{ν} A_{f} A_{n}	0.4 0.4 0.6	v v v	
Receiver 3 dB bandwidth	f_r	0.75 × <i>f</i> _b	GHz	
Transmitter equalizer, pre-cursor coefficient Minimum value Maximum value Step size	c(-1)	-0.18 0 0.02	=	Modify to fixed setting
Transmitter equalizer, post-cursor coefficient Minimum value Maximum value Step size	c(1)	-0.38 0 0.02	=	Modify to fixed setting
Continuous time filter, DC gain Minimum value Maximum value Step size	8DC	-12 0 1	dB dB dB	Increase the AC gain of CTLE?
Number of signal levels	L	2	-	
Number of samples per unit interval	М	32	-	
Decision feedback equalizer (DFE) length	N_b	14	UI	Set to zero
Normalized DFE coefficient magnitude limit	b _{max}	1	-	Remove
Random jitter, RMS	σ _{RJ}	0.01	UI	
Dual-Dirac jitter, peak	ADD	0.07	UI]
Receiver additive Gaussian noise, RMS	σ,	1	mV	1
Target detector error ratio	DER ₀	10 ⁻⁵	-	1e-12 (or 1e-15) - TBD

CAUI-4 ad hoc Feb 21, 2013

EE

CAUI-4 chip to chip receiver considerations

	KR4 (D1.4, TP5a)	MR	CAUI-4 chip to chip Potential
Differential Input Return loss (min)	RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6 <f<=19 ghz<="" td=""><td>A0 = -12 fo = 50MHz f1 = 4.4189 f2 = 25.78125 Slope = 12dB/dec</td><td>RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6<f<=19 ghz<="" td=""></f<=19></td></f<=19>	A0 = -12 fo = 50MHz f1 = 4.4189 f2 = 25.78125 Slope = 12dB/dec	RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6 <f<=19 ghz<="" td=""></f<=19>
Differential to common mode input returnloss	RL(f) = 25-1.44f 0.05<=f<=6.95 15 6/95 <f<=19< td=""><td></td><td>RL(f) = 25-1.44f 0.05<=f<=6.95 15 6/95<f<=19< td=""></f<=19<></td></f<=19<>		RL(f) = 25-1.44f 0.05<=f<=6.95 15 6/95 <f<=19< td=""></f<=19<>
Interference Tolerance	Table 93-7		RL(f) >= 20-1.44*f for 0.01<=f<=6.95 15 from 6.95<=f<=13
Jitter tolerance	Table 93-8		
Input amplitude (max)		1200	TBD

Receiver Interference/Jitter Tolerance leveraging 802.3bj

Parameter	Test values
Maximum BER*	10 ⁻¹²
Channel Insertion Loss at 12.89GHz	~15dB
Applied peak-to-peak sinusoidal jitter (covering CDR JTOL)	TBD
Applied peak-to-peak random jitter	TBD
Applied even-odd jitter	TBD
Applied RMS broadband noise	TBD

* Maximum BER assumes errors are not correlated to ensure a sufficiently high mean time to false packet acceptance (MTTFPA) assuming 64b/66b coding. Actual implementation of the receiver is beyond the scope of the standard.

Receiver Interference/Jitter Tolerance leveraging OIF CEI SR

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT	
Baud rate	R_Baud		19.90		28.05	GSym/s	
Input Differential Voltage	R_Vdiff	Note 1			1200	mVppd	
Differential Input Impedance	R_Rdin		80	100	120	Ω	
Input Impedance Mismatch	R_Rm				10	%	
Differential Input Return Loss	R_SDD11	See 10.3.2.3					
Common Mode Input Return Loss	R SCC11	Below 10 GHz			-6	dB	
	K_SCOTI	10GHz to baud rate			-4		
Input Common Mode Voltage	R_Vcm	Load Type 0 See Note 2	-200		1800	mV	

Table 10-12. Receiver Electrical Input Specifications

NOTES:

 The receiver shall have a differential input voltage range sufficient to accept a signal produced at point R by the combined transmitter and channel. The channel response shall include the worst case effects of the return losses at the transmitter and receiver.

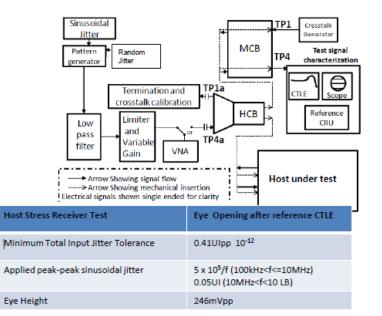
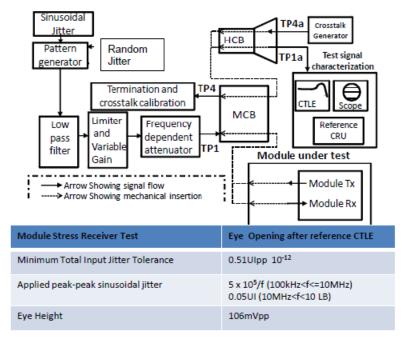

2. Load Type 0 with min. T_Vdiff, AC-Coupling or floating load. For floating load, input resistance shall be $\geq 1 k \Omega$

Table 10-13. Receiver Input Jitter Specification

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Sinusoidal Jitter, Maximum	R_SJ-max	See Section 2.5.4, note 1			5	Ulpp
Sinusoidal Jitter, High Frequency	R_SJ-hf	See Section 2.5.4, note 1			0.05	Ulpp
NOTES: 1. The Receiver shall tolerate the sum of defined in Table 10-13;The effects of a						ter as



Chip-module methodology

Host Stress Receiver Test

Module Stress Receiver Test

Compliance points

- See 93.8.2.1 Receiver test fixture from 802.3bj for TP5a
- See 93.8.1.1 Transmitter test fixture from 802.3bj for TP0a

Straw Poll

- I prefer to specify the transmitter for CAUI chip-chip using the methodology described in
 - A. 802.3ba CL 83A
 - B. 802.3bj CL93 / OIF CEI 28G SR
 - C. CAUI-4 chip-module (TP4)
 - D. CAUI-4 chip-module (with software channel)
- I prefer to specify the channel for CAUI chip-chip using the methodology described in
 - A. 802.3bj CL93 (COM)
 - B. OIF CEI 28G SR
- I prefer to specify the receiver / tolerance for CAUI chip-chip using the methodology described in
 - A. 802.3bj CL93
 - B. OIF CEI 28G SR
 - C. CAUI-4 chip-module

Minutes

- Discussed IEEE patent policy
- Reviewed latchman 01 0213 caui
 - Adhoc should ideally agree on methodology for baseline, but a baseline can still be put together without full agreement (leverage TBDs)
 - Discussed chip-chip DC coupling
 - Potentially two specs
 - Concern with potential interoperability
- Transmitter methodology discussion
 - VSR methodology discussed with software channel + CTLE -> look at eye diagram
 - Actual far end channel measurements also discussed
 - CAUI chip-chip specification ideally should allow designers to trade-off rise/fall, de-emphasis, swing
 - 802.3bj CL93 methodology discussed
 - Interest in leveraging chip-module methodology, or bj methodology (avoid creating new methodology)
 - Can KR spec be a super set?
 - Potential to relax amplitude, linear fit error
 - Have fixed number of de-emphasis settings to keep solution space manageable (~2 settings), discussed post cursor only emphasis
- Channel methodology discussion
 - OIF SR 28G method discussed
 - COM method discussed, added reference to COM value with TBD (potentially use 3dB as a starting point)
- **Receiver methodology discussion**
 - Discussed OIF and 802.3bj CL93 methodology
 - Added chip-module methodology
 - Preference to use simpler setup
 - Next meeting: 28/02/2013 at 9:00am PT

