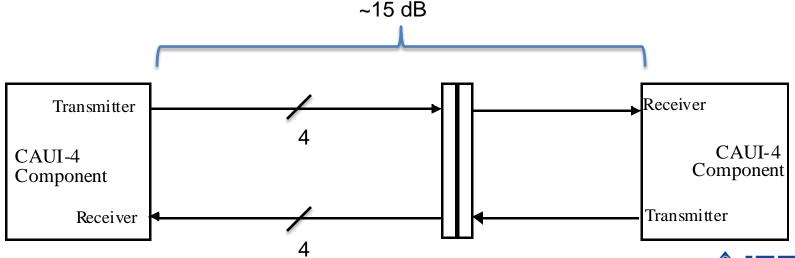
CAUI-4 Ad hoc

Ryan Latchman ryan.latchman@mindspeed.com


Agenda

- Patent Policy: The meeting is an official IEEE ad hoc. Please review the patent policy at the following site prior to the meeting. http://www.ieee802.org/3/patent.html
- Adhoc objective: chip-chip baseline for March
- Chip to chip draft baseline
 - Application space
 - Channel
 - Transmitter
 - Receiver
 - Areas of focus

Application

- Chip to chip interface
 - Low power, low latency, AC coupled interface between ICs running at 4 x
 25.78Gb/s
 - No FEC, No-DFE/or limited DFE (e.g., 1-tap or analog), no transmitter training
 - ~15 dB loss target with 1 connector (connector is optional)
 - Consistent with 25cm reach target
 - See http://www.ieee802.org/3/bm/public/nov12/palkert 02 1112 optx.pdf
 http://www.ieee802.org/3/bm/public/nov12/ghiasi 03 1112 optx.pdf
 - Higher loss channels also under analysis to enable longer links

CAUI-4 chip to chip transmitter considerations

	KR4 (D1.3, TP0a)	MR	CAUI-4 chip to chip Potential
Signaling rate, per lane	25.78125+/-100ppm	19.6 – 28.05	25.78125+/-100ppm
Differential peak-to-peak output voltage (max) with Tx disabled	30mV		30mVppd
Common Mode Voltage (max)	1.9V	1.7V	1.9V
Common Mode Voltage (min)	0V	-0.1V	OV
Differential output return loss (min)	RL(f) >= - 10log10((449.7+f^2)/(3671+f^2))	A0 = -12 fo = 50MHz f1 = 4.4189 f2 = 25.78125 Slope = 12dB/dec	RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6 <f<=19 ghz<="" td=""></f<=19>
Common mode output returnloss (min)	RL(f)>= 6dB, 0.05<=f<=13GHz	-6dB , f<10GHz -4dB, 10G <f<25.78125ghz< td=""><td>RL(f) > 8-0.5*f for 0.01<=f<=8 GHz 1.65 - 9.71*log10(f/14) from 8<=f<=19 GHz</td></f<25.78125ghz<>	RL(f) > 8-0.5*f for 0.01<=f<=8 GHz 1.65 - 9.71*log10(f/14) from 8<=f<=19 GHz
Common-mode AC output voltage (max,rms)	12mV	12mV	12mV
Amplitude peak-to-peak (max)	1200mV	1200mV	1200mV
Transition Time (20%-80%, min, no EQ)	8ps	8ps	8ps
Max output Jitter			See following slide
Output eye mask			See following slide
De-emphasis range			See following slide

CAUI-4 chip to chip transmitter leveraging: 802.3ba

Define output jitter at TP0a

Effective random jitter: 0.15Ulpp

Even – odd jitter: 0.035Ulpp

Total jitter: 0.28Ulpp

No (or default) de-emphasis

Define X1, X2, Y1, Y2 (TBD right now)

- X1 = 0.14
- Y2 = 600mV
- X2/Y1 chosen to allow for rise/fall vs. swing trade off
- De-emphasis off

De-emphasis range

Minimum de-emphasis: TBD

Maxim de-emphasis: TBD

Minimum VMA: TBD

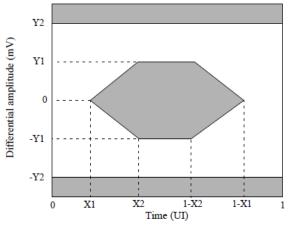
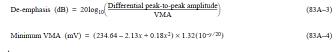



Figure 83A-8—Transmitter eye mask

where

- is the rise or fall time (whichever is larger) in ps
- y is de-emphasis value in dB

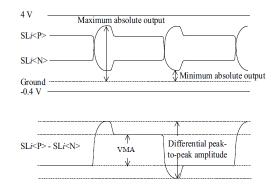


Figure 83A-5—Driver output voltage limits and definitions

CAUI-4 chip to chip transmitter leveraging: 802.3bj

Table 93-4-Summary of transmitter characteristics at TP0a

Parameter	Subclause reference	Value	Units
Signaling rate	93.8.1.2	25.78125±100 ppm	GBd
Differential peak-to-peak output voltage (max.) Transmitter disabled ^a Transmitter enabled	93.8.1.3	30 1200	mV mV
DC common-mode output voltage (max.)	93.8.1.3	1.9	v
DC common-mode output voltage (min.)	93.8.1.3	0	v
AC common-mode output voltage (RMS, max.)	93.8.1.3	12	mV
Differential output return loss (min.)	93.8.1.4	Equation (93-2)	dB
Common-mode output return loss (min.)	93.8.1.4	Equation (93-3)	dB
Transition time (20-80%, min.), no equalization ^b	93.8.1.5	8	ps
Output waveform Steady-state voltage v _f (max.) Steady-state voltage v _f (min.) Linear fit pulse peak (min.) Normalized RMS linear fit error (max.) Normalized coefficient step size (min.) Normalized coefficient step size (min.) Post-cursor full-scale range (min.) Post-cursor full-scale range (min.)	93.8.1.6	0.6 0.4 0.8 × v _f 0.037 0.0083 0.05	V V V
Far-end output noise (max.) Low insertion loss channel High insertion loss channel	93.8.1.7	2	mV
Output jitter (max.) Effective random jitter Even-odd jitter Total jitter excluding data dependent jitter	93.8.1.8	0.15 0.035 0.28	UI UI UI

Table 93-5-Linear fit pulse and equalizer parameters

Description	Symbol	Value	Units
Linear fit pulse length	N_p	8	UI
Linear fit pulse delay	D_p	2	UI
Equalizer length	N_{w}	8	UI
Equalizer delay	D_w	2	UI

De-emphasis setting (s)

CAUI-4 chip –chip is relatively low loss

^aThe transmitter for lane i is disabled when either Global_PMD_transmit_disable or PMD_transmit_disable_i is set to one.

Transmit equalization may be disabled by asserting the preset control defined in Table 45-60 and 45.2.1.81.3.

CAUI-4 chip to chip transmitter leveraging: OIF CEI SR

Table 10-6. Transmitter Electrical Output Specification.

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Baud Rate	T_Baud		19.90		28.05	Gsym/s
Output Differential Voltage	T_Vdiff	Emphasis off. See Note 4	800		1200	m∨ppd
Differential Resistance	T_Rd		80	100	120	Ω
Differential Termination Resistance Mismatch (see Table 1-2)	T_Rdm				10	%
Output Rise and Fall Time (20% to 80%)	T_tr, T_tf	Emphasis off. See Note 2	8			ps
Common Mode Noise	T_Ncm	Note 3			12	mVrms
Differential Output Return Loss	T_SDD22	See Section 10.3.1.3				dB
Common Mode Output Return Loss	T 00000	Below 10 GHz			-6	dB
Common Mode Output Return Loss T_SCC22	10 GHz to baud rate			-4	αв	
Output Common Mode Voltage	T_Vcm	Load Type 0 See Note 1	-100		1700	m∨

NOTES:

- Load Type 0 with min. T_Vdiff, AC-Coupling or floating load.
- The transmitter under test is preset such that C0 is its maximum value (C0_max) and all other coefficients are zero. The 20% and 80% values are of the steady state one and zero. The max value is limited by the linear fit pulse peak value in Table 10-11.
- Measurement procedure is defined in Section 12.3.
- T_Vdiff is two times the steady-state value V_f as defined in Section 10.3.1.6.2. The value is given as differential p-p voltage.

Table 10-7. Transmitter Output Jitter Specification

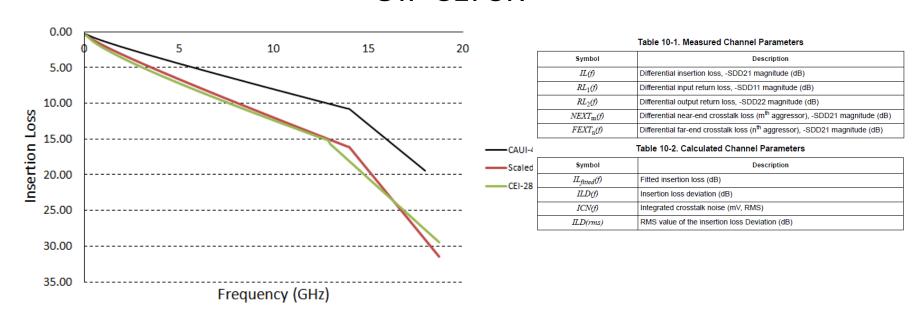
Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Uncorrelated Unbounded Gaussian Jitter	T_UUGJ				0.15	Ulpp
Uncorrelated Bounded High Probability Jitter	T_UBHPJ	Note 2			0.15	UI _{PP}
Duty Cycle Distortion (component of UBHPJ)	T_DCD	Note 3			0.035	Ulpp
Total Jitter	T_TJ	Note 1			0.28	Ulpp

NOTES:

- T_TJ includes all of the jitter components measured without any transmit equalization.
- Measured with all possible values of transmitter equalization, excluding DDJ as defined in 12.1.1.
- 3. included in T_UBHPJ

Table 10-11. Transmitter output waveform requirements

Parameter	Condition	Units	
Steady state output voltage, $2 \times v_f$	max	m∨ppd	1200
Steady state output voltage, $2 \times v_f$	min	m∨ppd	800
Linear fit pulse peak, p _{max}	min	-	0.80 x v _f
RMS error, σ_e	max	-	0.027 x v _f


Table 10-10. Linear fit pulse and equalizing filter parameters

Parameter	Value (UI)
Linear fit pulse length T_N _p	8
Linear fit pulse delay <i>T_D_p</i>	2
Equalizer length T_N _w	8
Equalizer delay <i>T_D_w</i>	2

Link budgets in this document assume adaptive TX FIR equalization that is part of the system management function. The specific implementation is outside the scope of this document.

CAUI-4 chip to chip transmitter leveraging: "Traditional" / OIF CEI SR

- Insertion Loss = 1.614 (0.075 + .537f^(0.5) + 0.566f) 0.01<=f<14 1.614 (-18+2f) 14<=f<18.75
- Return loss = TBD
- ILD = TBD
- ICN = TBD
- Or insertion loss increase depending on simulation results with Mike's channel (http://www.ieee802.org/3/bm/public/jan13/li_01_0113_optx.pdf)

CAUI-4 chip to chip transmitter leveraging: 802.3bj

Table 93-8—Channel operating margin parameters

Parameter	Symbol	Value	Units	
Signaling rate	f _b	25.78125	GHz	
Maximum start frequency	f_{\min}	0.05	GHz	
Maximum frequency step	Δf	0.01	GHz	
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	A_{ν} A_{f} A_{n}	0.4 0.4 0.6	v v v	
Transmitter 3 dB bandwidth Victim Far-end aggressor Near-end aggressor	f_{v} f_{f} f_{n}	$0.375 \times f_b$ $0.375 \times f_b$ f_b	GHz GHz GHz	
Receiver 3 dB bandwidth	f_r	0.75 × f _b	GHz	
Transmitter equalizer, pre-cursor coefficient Minimum value Maximum value Step size	c(-1)	-0.18 0 0.02	-	Modify to fixed setting
Transmitter equalizer, post-cursor coefficient Minimum value Maximum value Step size	e(1)	-0.38 0 0.02	<u> </u>	Modify to fixed setting
Continuous time filter, DC gain Minimum value Maximum value Step size	g _{DC}	-12 0 1	dB aus	Increase the AC gain of CTLF?
Number of signal levels	L	2	_	CILE?
Number of samples per unit interval	M	32	_	
Decision feedback equalizer (DFE) length	N_b	14		Set to zero
Normalized DFE coefficient magnitude limit	b _{max}	1		Remove
Random jitter, RMS	σ_{RJ}	0.01	UI	I KOIIIOVO
Dual-Dirac jitter, peak	A_{DD}	0.07	UI	
Receiver additive Gaussian noise, RMS	σ,	0.001	v	
Target detector error ratio	DER ₀	10 ⁻⁵		1e-12

CAUI-4 chip to chip receiver considerations

	KR4 (D1.3, TP5a)	MR	CAUI-4 chip to chip Potential
Differential Input Return loss (min)	RL(f) >= - 10log10((449.7+f^2)/(3671+f^2))	A0 = -12 fo = 50MHz f1 = 4.4189 f2 = 25.78125 Slope = 12dB/dec	RL(f) >= 12.05-f for 0.05<=f<=6 GHz 6.45 – 0.075f from 6 <f<=19 ghz<="" td=""></f<=19>
Common mode input returnloss			RLcm >=6dB 0.05 <f<=13ghz< td=""></f<=13ghz<>
Differential to common-mode return loss (min)	RL(f) >= 20-1.44*f for 0.01<=f<=6.95 15 from 6.95<=f<=13		RL(f) >= 20-1.44*f for 0.01<=f<=6.95 15 from 6.95<=f<=13
Input Differential Voltage (max)		1200 mV	1200 mV

Receiver Interference/Jitter Tolerance leveraging 802.3bj

Parameter	Test values
Maximum BER*	10-12
Channel Insertion Loss at 12.89GHz	~15dB
Applied peak-to-peak sinusoidal jitter (covering CDR JTOL)	TBD
Applied peak-to-peak random jitter	TBD
Applied even-odd jitter	TBD
Applied RMS broadband noise	TBD

^{*} Maximum BER assumes errors are not correlated to ensure a sufficiently high mean time to false packet acceptance (MTTFPA) assuming 64b/66b coding. Actual implementation of the receiver is beyond the scope of the standard.

Receiver Interference/Jitter Tolerance leveraging OIF CEI SR

Table 10-12. Receiver Electrical Input Specifications

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Baud rate	R_Baud		19.90		28.05	GSym/s
Input Differential Voltage	R_Vdiff	Note 1			1200	m∨ppd
Differential Input Impedance	R_Rdin		80	100	120	Ω
Input Impedance Mismatch	R_Rm				10	%
Differential Input Return Loss	R_SDD11	See 10.3.2.3				
Common Mode Input Return Loss	R_SCC11	Below 10 GHz			-6	dB
		10GHz to baud rate			-4	ub ub
Input Common Mode Voltage	R_Vcm	Load Type 0 See Note 2	-200		1800	mV

NOTES:

Table 10-13. Receiver Input Jitter Specification

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Sinusoidal Jitter, Maximum	R_SJ-max	See Section 2.5.4, note 1			5	Ulpp
Sinusoidal Jitter, High Frequency	R_SJ-hf	See Section 2.5.4, note 1			0.05	Ulpp

NOTES:

The receiver shall have a differential input voltage range sufficient to accept a signal produced at point R by the combined transmitter and channel. The channel response shall include the worst case effects of the return losses at the transmitter and receiver.

Load Type 0 with min. T_Vdiff, AC-Coupling or floating load. For floating load, input resistance shall be ≥ 1kΩ

The Receiver shall tolerate the sum of these jitter contributions: Total transmitter jitter from Table 10-7; Sinusoidal jitter as
defined in Table 10-13; The effects of a channel compliant to the Channel Characteristics (Section 10.2.6).

Compliance points

- See 93.8.2.1 Receiver test fixture from 802.3bj for TP5a
- See 93.8.1.1 Transmitter test fixture from 802.3bj for TP0a

Minutes

- IEEE patent policy
- Request to have channels shared to establish tolerable losses
 - Ali to send Mike his channel models
 - Ryan look into uploading channel information to allow broad analysis
- Reviewed transmitter specification methods
 - Interest around specifying two channel types (short and long)
 - Fixed emphasis settings for each type of channel
- Next meeting: February 21st at 9am PT