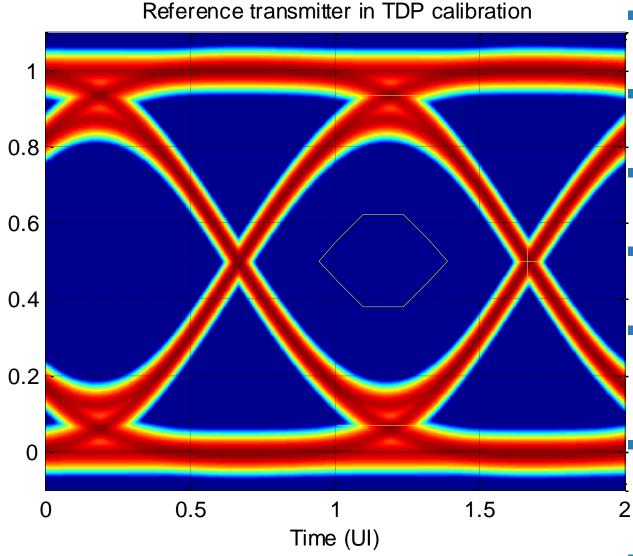
TDP, mask and VECP

Piers Dawe

IEEE P802.3bm, Jan 2014, Indian Wells

Contents


- Calibration of reference transmitter for TDP measurement
 - Error caused by definition of VECP
- Gaussian transmitter
 - Eye and TDP
- Realistic transmitter
 - Eye mask and TDP

Blue text denotes either emphasis or updated material

2

Reference transmitter in TDP calibration

However, the following slides assume a faster reference transmitter with P=0.80 dB, VECP=1.42 dB: error of 0.62 dB (values for zero error also provided) A lower noise reference transmitter would have a smaller VECP-induced error

This is a 12 ps transmitter with RIN_OMA -133 dB/Hz as seen through the 12.6 GHz Bessel-Thomson reference receiver Deterministic ISI at -0.11 UI from eye centre

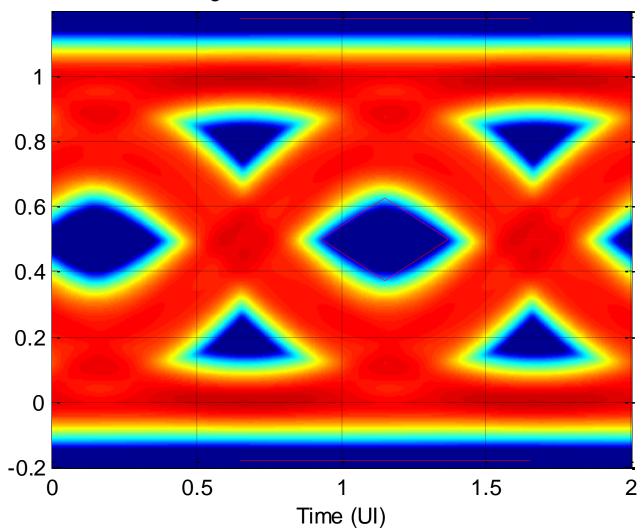
- P_ISI = 1.57 dB
- Signal's penalty P
- 1.30 dB
- VECP at all but 0.1%
 - 2.06 dB
- The "worst bit and noise" penalty (spreadsheet algorithm) would be
 - 1.61 dB
- VECP is a bad estimate of the signal's penalty
 - VECP P = 2.06 1.30 = -0.79 dB
 - VECP is ~0.8 dB too large
- This error causes the TDP results this much higher than otherwise
- Worse, the error depends on the proportions of ISI and noise, and the details of the ISI
 - A simple correction factor won't fix this

IEEE P802.3bm, Jan 2014, Indian Wells

TDP, mask and VECP

Discussion

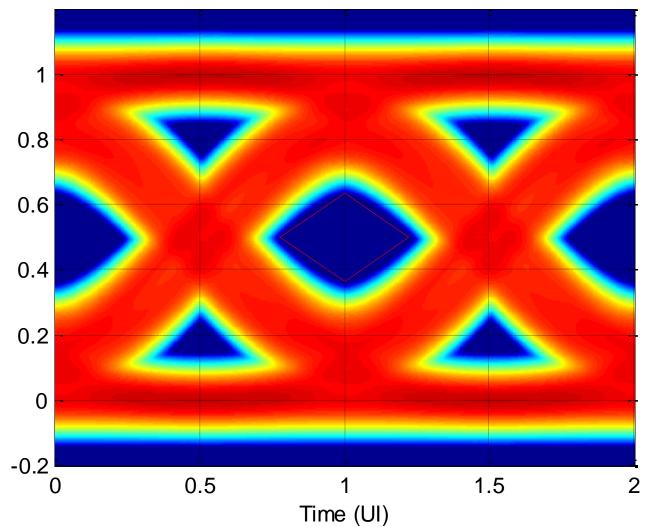
- In spite of its name, VECP is not a penalty
 - In 802.3ae, it is defined by all but 0.1% of the vertical distribution. This correlates well with penalty for BER = 1e-12
- For 100GBASE-SR4 with BER = 5e-5, we need to find the right proportion for "all but"
- This could be found by investigating reference transmitters with different mixes of ISI and noise
- However, there is a much larger VECP (with much larger error) in the stressed receiver spec
 - It would be better to investigate stressed eyes with different mixes of ISI and noise



Gaussian transmitter

- Simulating a Gaussian transmitter with DJ and RJ
- Finding its TDP in 12.6 GHz as in D2.0, and in 16.2 GHz

Gaussian transmitter after 12.6 GHz TDP filter

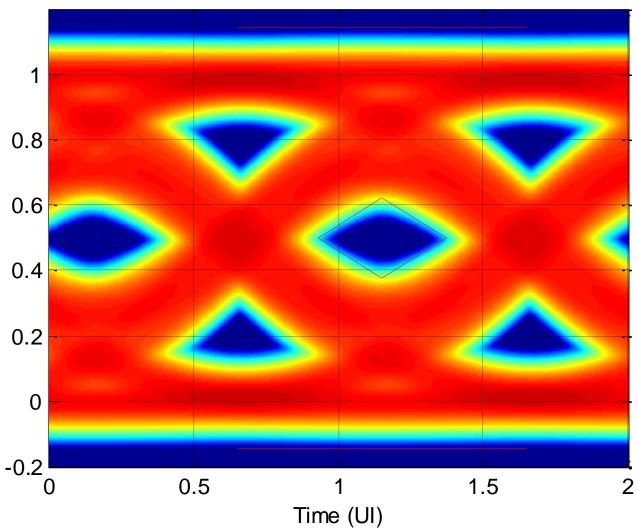

Signal under test after TDP filter

- 21 ps Gaussian transmitter
- 0.05 UI Even-Odd Jitter
- 0.247-0.05 = 0.197 UI SJ
- 0.00793 UI applied RJ
- TDP = 4.46 dB (3.64 dB without VECP error)
- Stressed receiver eye mask of Table 95-7 (red)

'ECP error) ble 95-7 (red)

Gaussian transmitter after 16.2 GHz TDP filter

Signal under test after TDP filter


As before but 16.2 GHz observation filter

TDP(16.2) = 3.58 dB (2.89 dB without VECP error)

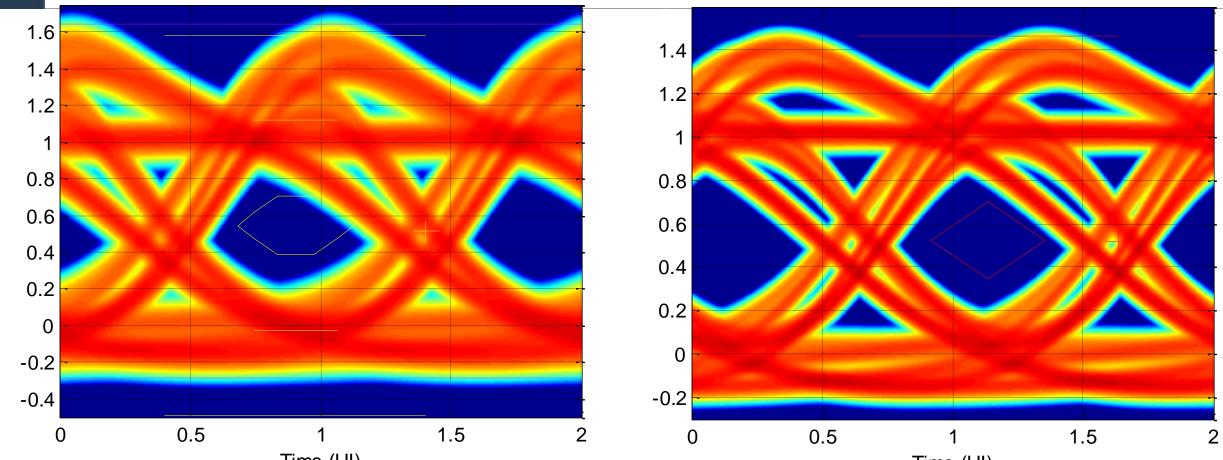
on filter hout VECP error)

Slower Gaussian, moving towards max TDP

Signal under test after TDP filter

- 24 ps Gaussian transmitter
- 0.05 UI Even-Odd Jitter
- 0.247-0.05 = 0.197 UI SJ
- 0.00793 UI applied RJ
- TDP = 5.40 dB (4.51 dB without VECP error)
- Stressed receiver eye mask of Table 95-7 (red)

New slide

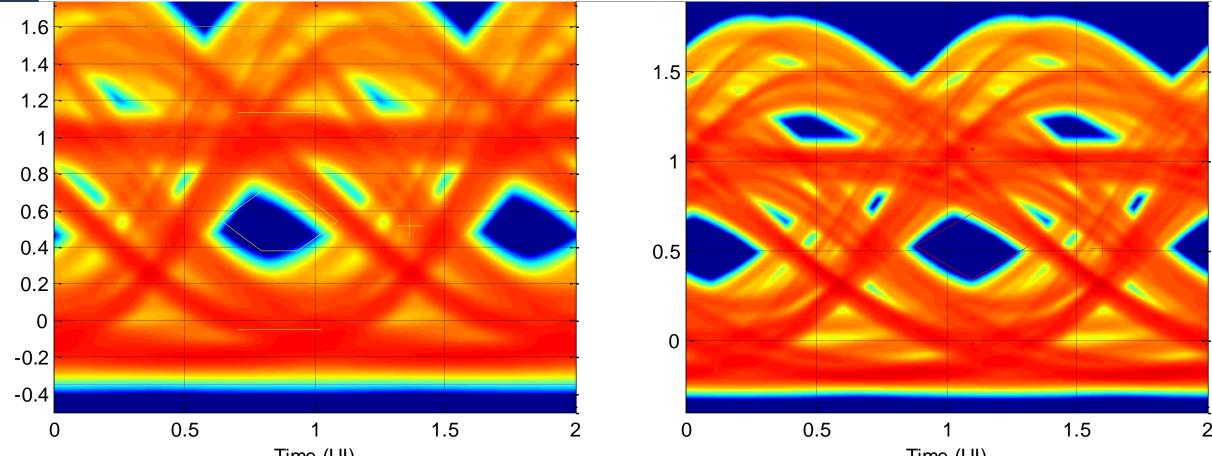


'ECP error) ble 95-7 (red)

Realistic transmitter and eye mask

Filtered light

Signal under test after TDP filter


Left: observed through 19.34 GHz Bessel-Thomson filter, transmitter eye mask of Table 95-6 Right: observed through 12.6 GHz Bessel-Thomson filter, stressed receiver eye mask of Table 95-7

- This is a simulated laser eye with a TDP of 2.86 dB (2.07 dB without VECP error)
- The eye is barely passing the inner mask, but fails the outer mask (yellow mask, magenta shows extent of signal)
- A signal with a TDP of 5 dB could fail the mask by a large margin (see next slide)
- Mask needs to be made easier: both inner mask smaller (Y1, Y2) and outer mask larger (Y3) IEEE P802.3bm, Jan 2014, Indian Wells TDP, mask and VECP

Transmitter with ~4.2 dB TDP New slide

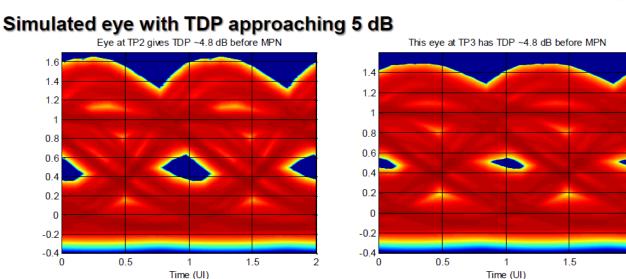
Time (UI) Left: observed through 19.34 GHz Bessel-Thomson filter, transmitter eye mask of Table 95-6 Right: observed through 12.6 GHz Bessel-Thomson filter, stressed receiver eye mask of Table 95-7

- This is a simulated laser eye with a TDP of 4.95 dB (4.16 dB without VECP error)
- The eye fails both inner mask and outer mask (yellow mask, magenta shows extent of signal)
 - Also it's difficult to get an accurate measure of OMA with PRBS9
- Mask needs to be made easier: both inner mask smaller (Y1, Y2) and outer mask larger (Y3) IEEE P802.3bm, Jan 2014, Indian Wells TDP, mask and VECP

Eye mask

- Eye mask is intended to be permissive: TDP is the primary measure of transmitter quality, almost all signals with adequate TDP should pass the eye mask spec
 - Th exception is a signal with more TP than the TDP limit
- The inner eye mask needs relaxation
 - Or very much tighter TDP, which would not be a cost effective choice
- A well chosen 10-sided mask correlates better to useful performance than a hexagonal mask

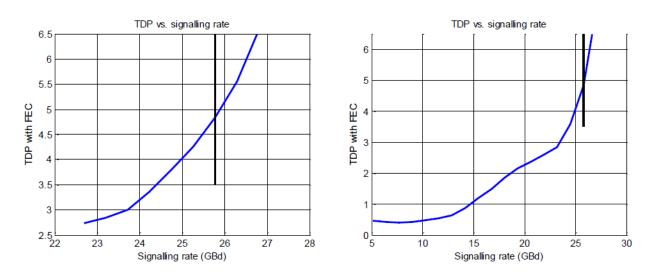
The outer eye mask needs relaxation


- Outer eye mask controls overshoot, partly for its own sake and partly in an attempt to control bounce-back into the middle of the eye that would cause a problem to a receiver with higher bandwidth than the reference 19.34 GBd
- The smaller the inner eye mask is, the more bounce back can be tolerated by a compliant receiver
- Over the generations of optical Ethernet, the inner eye mask has been relaxed; the outer eye mask has also been relaxed but has not kept up:
- PMD type Inner eye Y1, Y2 Outer eye Y3
- 1000BASE-SX 0.2 0.2 0.3
- 10GBASE-SR (A) 0.25 0.28 0.4
- 10GBASE-SR (B) 0.235 0.265 0.4
- 40GBASE-SR4 0.27 0.35 0.4
- 100GBASE-SR4 0.36 0.44 0.4
- This time we need to increase Y3 to keep up with changes in Y1, Y2. Increase Y3 to 0.55

5 dB TDP is too high anyway

IPTRONICS

- TDP like Clause 52: +/-0.05 UI, but:
 - BER = 5e-5
 - 100 m of OM4 modelled as a Gaussian filter, like spreadsheet model
 - Standard fourth-order Bessel-Thomson
- Includes ISI from chromatic dispersion but not MPN
- Is this on the cliff edge?


- The colour scale here is not the same as previous slides
- Also we need to find an additional 0.2 dB in the budget for modal noise penalty (see dawe_04_0114_optx.pdf)
- This eye is on the "cliff edge": about to collapse. Widening the decision timing offsets has helped

It seems that 5 dB TDP is too high anyway

IPTRONICS

ipt

TDP vs. signalling rate

- IC bandwidths scaled with signalling rate, laser not scaled
- 2% rate change increases TDP by 0.7 dB yes, cliff edge

Simulating impairments for an MMF PHY with FEC

IEEE P802.3bm, Jan 2014, Indian Wells

TDP, mask and VECP

P802.3bm May 2013

Thank You

