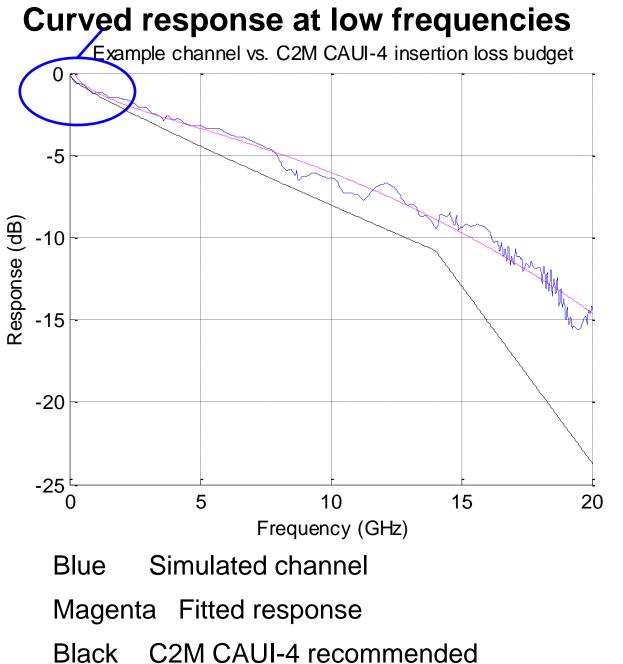
Effect of pattern length on apparent peak-to-peak voltage

Piers Dawe

IEEE P802.3bm, Jan 2014, Indian Wells

Introduction

- Comment 137
- The apparent peak-to-peak differential output voltage of the host depends on the pattern used, because the host channel and HCB have loss and the signal is under-emphasised where observed. Also it is better to have a spec that relates consistently to voltage swing at the **IC**, so there is no need to set up the swing port by port.
- PRBS9 is too short for consistent measurements across different host losses.
- Define suitable patterns for peak-to-peak differential voltage: any of PRBS15, PRBS31, scrambled idle, RF, any other 100GBASE-R signal (FEC encoded or not).
- Subclause: 83E.3.1.2 Signal levels
- Page 166, Line 42
- For OIF members, this issue was presented in oif2013.320.00
 - For CEI-28G-VSR, OIF chose PRBS31



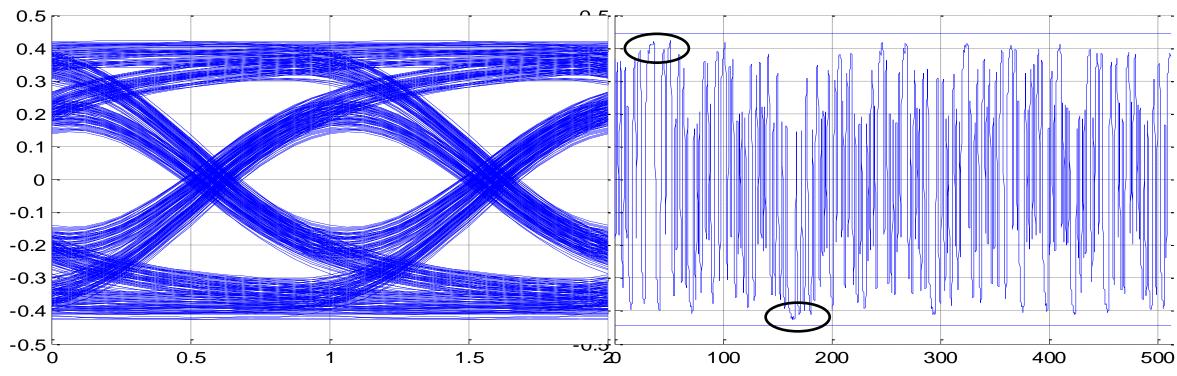
Problem statement

- We want to control the true peak-to-peak voltage in use, to avoid any overload or nonlinear reflection issues
- I believe the intention of spec is 900 mV in service (scrambled user data)
- OIF's CEI, including CEI-28G-VSR, defines peak-to-peak voltage with PRBS31
- With PRBS9, for a lossy channel, the signal doesn't have long enough to stabilise
 - We won't find the true peak-to-peak voltage
 - The error depends on host channel and package loss
 - The error can be around 5% for a reference high loss host
 - We don't know and can't control the host loss in the spec: implementers can exceed the recommended loss if they meet the specs at the test points
- This presentation investigates the effect of pattern length so that the peak-to-peak output voltage spec can be made unambiguous, useful to protect the receiver, and consistent (not channel dependent) for the transmitter IC

Channel simulated: host to module

- Signalling rate 28 GBd
- Channel is Sdd21 of oif2010_407 *
 - This is not worst case
 - Should include IC package response
 - Minimum SDD21 is only a recommendation; implementers will try for more loss

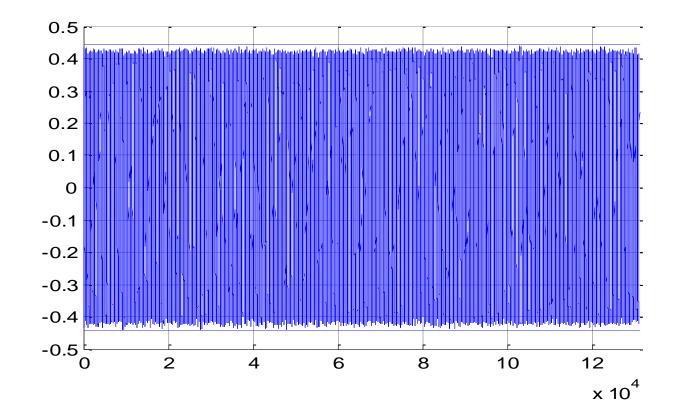
DC response of this channel is 0.987 or -0.12 dB


C2M CAUI-4 recommended minimum SDD21

* There is an equivalent channel "Host to Module Link" in the P802.3bj channel data web page

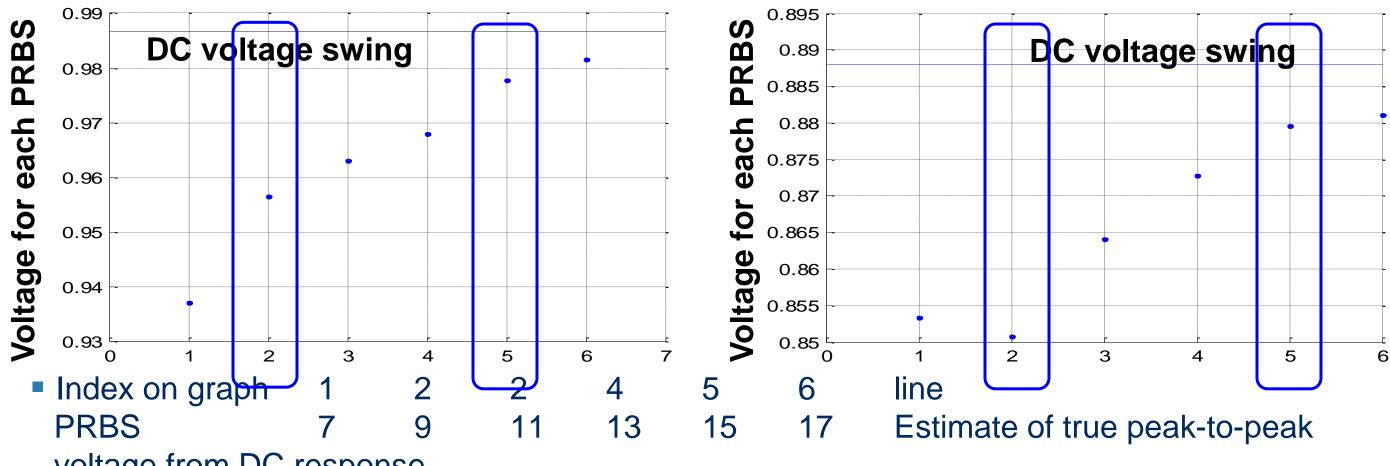
IEEE P802.3bm, Jan 2014, Indian Wells

PRBS9



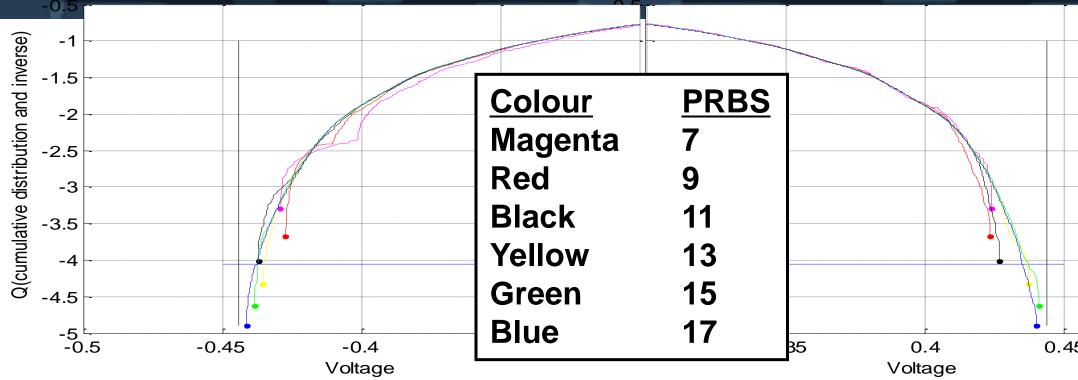
We want to control the true peak-to-peak voltage in use, to avoid any overload or nonlinear reflection issues

- With PRBS9, signal doesn't have long enough to stabilise
- We don't find the true peak-to-peak voltage
- The error depends on host channel and package loss, which we don't know


PRBS17

Getting better...

Peak-to-peak voltage depends on pattern



- voltage from DC response
- Left and right input signals differ
- Left: 25.78125 GBd Right: 28 GBd
- 3% to 4% error with PRBS9 in these cases
- Host IC package loss and any more host channel loss will increase this maybe 5%
- Going to PRBS15 reduces this to about 1%

IEEE P802.3bm, Jan 2014, Indian Wells

Is the peak-peak voltage clearly defined?

PRBS7 to PRBS11 are too short to find the in-service peak-to-peak voltage with user data not a test pattern

- Note the "PRBS end effects": the extremes of the curves are rough
- In this case, PRBS13, 15 and 17 give very similar results
- Measuring to the usual mask hit ratio of 5e-5 would give consistent results from a quick measurement with PRBS15 or longer (e.g. PRBS31)
 - More practical than original pk-pk on PRBS31
 - More accurate than PRBS9

	Horizontal lines:
	2.5e-5 each (high
	and low)
	Vertical lines:
	asymptote for a
	very long
	scrambled
5	sequence

Module to host

- Here there is less frequency-dependent loss from traces but there is baseline wander from the required AC coupling in the module
 - If we use a long pattern e.g. PRBS31 we should define our "peak-to-peak" at a particular probability to avoid measuring unimportant low-probability tails
 - If we use a medium pattern e.g. PRBS15 we should define our "peak-to-peak" at a particular probability to avoid "PRBS end effects"

Options

1. Use PRBS15

- This gets us to about 1% of the right result
 - If needed, reduce the host differential voltage pk-pk by about 1% from 900 mV to 890 mV
- Can live without defining a probability on the CDF to guard against patterning effects, but still useful to deal consistently with the effects of noise in the measurement, and see next slide
 - Example: from all but 2.5e-5 of samples above to all but 2.5e-5 of samples below
 - If needed, reduce the host differential voltage pk-pk by about 2.2% from 900 mV to 880 mV
 - Assuming near maximum recommended host loss
 - ICs in low loss hosts would have to avoid the last 10 mV of amplitude
 - Those channels would not need high amplitude anyway

Use PRBS31 or compliant Ethernet signal, define the probability 2.

- Example: from all but 2.5e-5 of samples above to all but 2.5e-5 of samples below ullet
- If needed, reduce the host differential voltage pk-pk by about 2.2% from 900 mV to 880 mV
 - ICs in low loss hosts would have to avoid the last 20 mV of amplitude

Use PRBS9, but define the probability 3.

- Still a good thing to define the probability to deal consistently with the effects of noise ٠
- Reduce the host differential voltage pk-pk by about 5.6% from 900 mV to 850 mV
- ICs in low loss hosts would have to avoid the last 50 mV of amplitude
- With the right probability, all these measurements are reasonably quick because they don't need pattern lock. However, PRBS9 and PRBS15 can be measured with pattern lock if desired

Simple

Simple, practical, consistent, very similar result to PRBS31

Simple, practical, consistent

This buys out the error rather than measuring the right thing

Conclusion

- For measurement accuracy and relevance, define suitable patterns for peak-topeak differential voltage: any of PRBS15, PRBS31, scrambled idle, RF, any other 100GBASE-R signal (FEC encoded or not).
- For measurement consistency, define peak-to-peak voltage by all but 5e-5 of the samples

Thank You

